版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章
特殊平行四边形1.1菱形的性质与判定第3课时
名师点金菱形具有一般平行四边形的所有性质,同时又具有一些特性,可以归纳为三个方面:(1)从边看:对边平行,四边相等;(2)从角看:对角相等,邻角互补;(3)从对角线看:对角线互相垂直平分,并且每一条对
角线平分一组对角.判定一个四边形是菱形,可先判定这个四边形是平
行四边形,再判定一组邻边相等或对角线互相垂直,
也可直接判定四边相等.(1)∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形,∠DAC=∠ACE.∵AC平分∠BAD,∴∠EAC=∠DAC.∴∠EAC=∠ACE.∴AE=CE.∴四边形AECD是菱形.证明:(2)△ABC是直角三角形,理由如下:∵点E是AB的中点,∴AE=BE.∵AE=CE,∴CE=BE.∴∠EBC=∠ECB.∵∠EBC+∠BCA+∠BAC=180°,
∠EAC=∠ACE,∴∠BCE+∠ECA=90°,即∠BCA=90°.∴△ABC是直角三角形.解:2训练角度利用菱形的性质与判定证明线段的关系2.如图,在四边形ABCD中,AB∥CD,AB≠CD,
BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是
AB,CD,AC,BD的
中点,求证:线段EF
与线段GH互相垂直平分.(1)如图,过点B作BM∥AC交DC的延长线于点M,
则∠ACD=∠M.
∵AB∥CD,∴四边形ABMC为平行四边形.∴AC=BM.∵AC=BD,∴BD=BM.∴∠BDC=∠M=∠ACD.
又∵CD=DC,
∴△ACD≌△BDC.∴AD=BC.证明:(2)如图,连接EH,HF,FG,GE,∵E,F,G,H分别是AB,CD,AC,BD的中点,∴HE∥AD,且HE=
AD,FG∥AD,
且FG=
AD,EG=
BC.∴HE∥FG,HE=FG.∴四边形HFGE为平行四边形.由(1)知,AD=BC,∴HE=EG.∴▱HFGE为菱形.∴线段EF与线段GH互相垂直平分.3训练角度利用菱形的性质与判定求线段长3.如图,在四边形ABCF中,∠ACB=90°,点E
是AB的中点,点F恰是点E关于AC所在直线的
对称点.(1)证明:四边形AECF为菱形;(2)设EF交AC于点O,若BC=10,
求线段OF的长.(1)因为点F恰是点E关于AC所在直线的对称点,所以AC应是EF的中垂线.所以CE=CF,AE=AF.又点E是直角三角形ABC斜边上的中点,所以AE=CE.所以AE=AF=CE=CF.所以四边形AECF是菱形.证明:(2)因为四边形AECF是菱形,所以OA=OC,OE=OF.因为点E是AB的中点,所以EO是△ACB的中位线.所以EO=
BC=5.所以OF=5.解:4训练角度利用菱形的性质与判定解决面积问题4.如图,在等腰三角形ABC中,AB=AC,AD平分
∠BAC,交BC于点D,在线段AD上任取一点P(点A除外),
过点P作EF∥AB,分别交AC,BC于点E,F,作PM∥AC,
交AB于点M,连接ME.(1)求证:四边形AEPM为菱形.(2)当点P在何处时,菱形AEPM
的面积为四边形EFBM面积的
一半?请说明理由.(1)∵EF∥AB,PM∥AC,∴四边形AEPM为平行四边形.∵AD平分∠BAC,∴∠CAD=∠BAD.∵EP∥AB,∴∠BAD=∠EPA.∴∠CAD=∠EPA.∴EA=EP.∴四边形AEPM为菱形.证明:解:(2)当点P为EF的中点时,S菱形AEPM=
S四边形EFBM.
理由如下:∵四边形AEPM为菱形,∴AP⊥EM.∵AB=AC,∠CAD=∠BAD,∴AD⊥BC.∴EM∥BC.又∵EF∥AB,∴四边形EFBM为平行四边形.
过点E作EN⊥AB于点N,如图,∵EP=
EF,∴S菱形AEPM=AM·EN=EP·EN=
EF·EN
=
S四边形EFBM.平行线分线段成比例第四章图形的相似
1.了解平行线分线段成比例的基本事实及其推论;(重点)2.会用平行线分线段成比例及其推论解决相关问题.(难点)
学习目标新课导入观察与猜想下图是一架梯子的示意图,由生活常识可以知道:AD,BE,CF互相平行,且若AB=BC,你能猜想出什么结果呢?abcDE=EFDFE讲授新课平行线分线段成比例(基本事实)一
如图①,小方格的边长都是1,直线a∥b∥c,分别交直线m,n于A1,A2,A3,B1,B2,B3.合作探究A1A2A3B1B2B3mnabc图①A1A2A3B1B2B3mnabc
(1)计算,你有什么发现?(2)将b向下平移到如图②的位置,直线m,n与直线b的交点分别为A2,B2.你在问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?A1A2A3B1B2B3mnabc图②(3)根据前两问,你认为在平面上任意作三条平行线,用它们截两条直线,截得的对应线段成比例吗?
一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a∥b∥c,则,,
归纳:
A1A2A3B1B2B3bca1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?
想一想:
如图,已知l1∥l2∥l3,下列比例式中错误的是()A.B.C.D.DACEBDFl2l1l3做一做
如图,直线a∥b∥c,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,平行线分线段成比例定理的推论二A1A2A3B1B2B3bcmna观察与思考把直线n向左或向右任意平移,这些线段依然成比例.A1A2A3bcmB1B2B3na
直线n向左平移到B1与A1重合的位置,说说图中有哪些成比例线段?
把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?A1(B1)A2A3B2B3()A1A2A3bcmB1B2B3na
直线n向左平移到B2与A2重合的位置,说说图中有哪些成比例线段?
把图中的部分线擦去,得到新的图形,刚刚所说的线段是否仍然成比例?A2(B2)A1A3B1B3()
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.A1(B1)A2A3B2B3A2(B2)A1A3B1B3
归纳:
如图,DE∥BC,,则
;FG∥BC,,则
.ABCEDFG做一做例题例1如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,已知AB=1,BC=3,DE=2,则EF的长为(
)A.4B.5C.6D.8C例题知识点如图,在△ABC中,E,F分别是AB和AC上的点,且EF∥BC.(1)如果AE=7,EB=5,FC=4,那么AF的长是多
少?(2)如果AB=10,AE=6,AF=5,那么FC的长是
多少?例2解:(1)∵EF∥BC,∴∵AE=7,EB=5,FC=4,
∴AF=(2)∵EF∥BC,∴∵AB=10,AE=6,AF=5,∴AC=∴FC=AC-AF=归
纳利用平行线分线段成比例的基本事实求线段长的方法:
先确定图中的平行线,由此联想到线段间的比例关系,结合待求线段和已知线段写出一个含有它们的比例式,构造出方程,解方程求出待求线段长.1.如图,已知l1∥l2∥l3,下列比例式中错误的是(
)A.
B.C.
D.D2.如图,在△ABC中,EF∥BC,AE=2cm,BE=6cm,
BC=4cm,EF长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版企业借款担保合同范本
- 2025年度云计算数据中心建设与运营合同3篇
- 渭南职业技术学院《学科综合训练》2023-2024学年第一学期期末试卷
- 二零二五版反担保合同编制与合同履行规范3篇
- 2024年适用各类借款协议标准格式三例版
- 潍坊工商职业学院《嵌入式系统与开发》2023-2024学年第一学期期末试卷
- 2024版电梯施工安全协议书范本
- 二零二五年度环保产业股票质押管理合同3篇
- 2024版环保新材料研发与生产合作协议
- 二零二五版建筑材料居间代理合同规范文本2篇
- 《郑伯克段于鄢》-完整版课件
- (日文文书模板范例)请求书-请求书
- 土壤肥料全套课件
- 毕业生延期毕业申请表
- 学校6S管理制度
- 肽的健康作用及应用课件
- T.C--M-ONE效果器使用手册
- 8小时等效A声级计算工具
- 人教版七年级下册数学计算题300道
- 社会实践登记表
- 挖地下室土方工程合同
评论
0/150
提交评论