2024届贵州省遵义市名校数学九年级第一学期期末学业水平测试试题含解析_第1页
2024届贵州省遵义市名校数学九年级第一学期期末学业水平测试试题含解析_第2页
2024届贵州省遵义市名校数学九年级第一学期期末学业水平测试试题含解析_第3页
2024届贵州省遵义市名校数学九年级第一学期期末学业水平测试试题含解析_第4页
2024届贵州省遵义市名校数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省遵义市名校数学九年级第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.2.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是()A.k≥ B.k> C.k<﹣ D.k<3.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是()A.14 B.15 C.16 D.174.如图,双曲线经过斜边上的中点,且与交于点,若,则的值为()A. B. C. D.5.若+10x+m=0是关于x的一元二次方程,则m的值应为()A.m="2" B.m= C.m= D.无法确定6.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.7.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2cm B.5.4cm C.3.6cm D.0.6cm8.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数9.如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为()A.1.1米 B.1.5米 C.1.9米 D.2.3米10.如图,已知直线,直线、与、、分别交于点、、和、、,,,,()A.7 B.7.5 C.8 D.4.5二、填空题(每小题3分,共24分)11.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且,则m+n的最大值为___________.12.如图,抛物线与轴交于点和点.(1)已知点在第一象限的抛物线上,则点的坐标是_______.(2)在(l)的条件下连接,为抛物线上一点且,则点的坐标是_______.13.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.14.在Rt△ABC中,∠C=90,AB=4,BC=3,则sinA的值是______________.15.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.16.如图,在矩形中,,点在边上,,则BE=__________;若交于点,则的长度为________.17.方程(x+1)(x﹣2)=5化成一般形式是_____.18.若长方形的长和宽分别是关于x的方程的两个根,则长方形的周长是_______.三、解答题(共66分)19.(10分)已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.20.(6分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?21.(6分)先化简,再求值:÷(1+x+),其中x=tan60°﹣tan45°.22.(8分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?23.(8分)如图,直线y=1x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=1.(1)求H点的坐标及k的值;(1)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.24.(8分)如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.(1)求的值;(2)若两个图像在第三象限的交点为,则点的坐标为;(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.25.(10分)已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求的取值范围.26.(10分)已知一次函数(为常数,)的图象分别与轴、轴交于、B两点,且与反比例函数的图象交于、D两点(点在第二象限内,过点作轴于点(1)求的值(2)记为四边形的面积,为的面积,若,求的值

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【题目详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【题目点拨】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.2、D【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,于是得到1﹣3k>0,然后解不等式即可.【题目详解】∵x1<0<x2,y1<y2,∴反比例函数图象分布在第一、三象限,∴1﹣3k>0,∴k<.故选:D.【题目点拨】此题考查反比例函数的性质,根据点的横纵坐标的关系即可确定函数图象所在的象限,由此得到k的取值范围.3、B【分析】三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.【题目详解】解:∵a∥b∥c,AC=8,CE=12,BD=6,

∴,即,解得:,故选:B.【题目点拨】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.4、B【分析】设,根据A是OB的中点,可得,再根据,点D在双曲线上,可得,根据三角形面积公式列式求出k的值即可.【题目详解】设∵A是OB的中点∴∵,点D在双曲线上∴∴∵∴故答案为:B.【题目点拨】本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.5、C【解题分析】试题分析:根据一元二次方程的定义进行解得2m﹣1=2,解得m=.故选C.考点:一元二次方程的定义6、A【解题分析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.7、B【解题分析】由已知可证△ABO∽CDO,故,即.【题目详解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故选B【题目点拨】本题考核知识点:相似三角形.解题关键点:熟记相似三角形的判定和性质.8、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【题目详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.9、D【分析】根据黄金分割点的比例,求出距离即可.【题目详解】∵黄金分割点的比例为(米)∴主持人站立的位置离舞台前沿较近的距离约为(米)故答案为:D.【题目点拨】本题考查了黄金分割点的实际应用,掌握黄金分割点的比例是解题的关键.10、D【分析】根据平行线分线段成比例定理,列出比例式解答即可.【题目详解】∵∴即:故选:D【题目点拨】本题考查的是平行线分线段成比例定理,掌握定理的内容并能正确的列出比例式是关键.二、填空题(每小题3分,共24分)11、【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【题目详解】解:过作于,延长交于,过作于,过作于,设,,,,,,,,,,即,,,,,即,,,,,当最大时,,,当时,,,的最大值为.故答案为:.【题目点拨】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.12、(1)(2)【分析】(1)由题意把点坐标代入函数解析式求出m,并由点在第一象限判断点的坐标;(2)利用相似三角形相关性质判定≌,并根据题意设,则,表示P,把代入函数解析式从而得解.【题目详解】解:(1)把点坐标代入函数解析式得解得∵点在第一象限∴∴∴(2)∵(作为特殊角,处理方法是作其补角)∴过点作延长线于点∵,∴为等腰直角三角形∴(因为,,所以考虑构造一线三垂直,水平竖直作垂线)∴过点作轴于点,于点∴≌∵∴∴设:,则∴∴(注意咱们设,为整数,点在第三象限,横纵坐标为负数,所以点的坐标表示要注意正负!)把代入函数解析式得解得或6(舍去)∴∴.【题目点拨】本题是二次函数综合题,主要考查坐标轴上点的特点,对称的性质,相似三角形的判定和性质,勾股定理,作出辅助线构造出相似三角形是解本题的关键.13、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.【题目详解】解:∵DE//BC,∴,即,解得:AE=1.故答案为:1cm.【题目点拨】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.14、【分析】画出图形,直接利用正弦函数的定义进行求解即可.【题目详解】如图:在Rt△ABC中:sinA=∵AB=4,BC=3∴sinA=故本题答案为:.【题目点拨】本题考查了三角函数的定义,注意正弦,余弦,正切定义记清楚.15、16【分析】先证明,然后再根据相似三角形的性质求解即可.【题目详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.【题目点拨】本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.16、5【分析】根据矩形的性质得出∠DAE=∠AEB,再由AB和∠DAE的正切值可求出BE,利用勾股定理计算出AE的长,再证明△ABE∽△FEA,根据相似三角形的性质可得,代入相应线段的长可得EF的长,再在在Rt△AEF中里利用勾股定理即可算出AF的长,进而得到DF的长.【题目详解】解:∵点在矩形的边上,∴,∴.在中,,∴,∴.∵∴△ABE∽△FEA,∴,即,解得.∵.∴.【题目点拨】此题主要考查了相似三角形的判定与性质,以及勾股定理的应用,关键是掌握相似三角形的判定方法和性质定理.相似三角形对应边的比相等,两个角对应相等的三角形相似.17、x2﹣x﹣7=1.【分析】一元二次方程,b,c是常数且的a、b、c分别是二次项系数、一次项系数、常数项.【题目详解】解:方程(x+1)(x﹣2)=5化成一般形式是x2﹣x﹣7=1,故答案为:x2﹣x﹣7=1.【题目点拨】本题考查了一元二次方程的一般形式:,b,c是常数且a≠1)特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,bx叫一次项,是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.18、6【分析】设长方形的长为a,宽为b,根据根与系数的关系得a+b=3,即可得到结论.【题目详解】解:设长方形的长为a,宽为b,根据题意得,a+b=3,所以长方形的周长是2×(a+b)=6.故答案为:6.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=.三、解答题(共66分)19、(1)60°,5;(2)AM=BM+CM【分析】(1)由旋转性质可得△ABM≌△CAN,根据全等三角形的性质和等边三角形的判定可得△AMN是等边三角形,继而求出∠AMN=60°,根据∠BMC=120°,∠AMN=∠AMC=60°,继而求出∠AMB;AM=MN=MC+CN.(2)【题目详解】解∵把△ABM绕着点A按逆时针方向旋转60到△ACN的位置,所以∠NAM=60°,因为AN=AM,所以△AMN是等边三角形,所以∠AMN=60°,因为∠BMC=120°,∠AMN=∠AMC=60°,所以∠AMB=∠BMG-∠AMG=120°-60°=60°,∵把△ABM绕着点A按逆时针方向旋转60°到△ACN的位置,所以△ABM≌△CAN,所以BM=CN=2,△AMN是等边三角形AM=MN=MC+CN=3+2=5,故答案为60°,5;(2)AM=BM+CM,∵把△ABM绕着点A按逆时针方向旋转60°到△ACN的位置,所以△ABM≌△CAN,因为AN=AM,所以△AMN是等边三角形,所以∠AMN=60°,因为∠BMC=n°,∠AMN=∠AMC=60°,所以∠MNA=∠MAN,所以MA=MN,所以AM=BM+CM.【题目点拨】本题主要考的三角形的旋转及等边三角形的应用以及三角形全等性质的使用,解决本题的关键是要熟练掌握旋转性质和全等三角形的性质.20、树高为米.【分析】延长交BD延长线于点,根据同一时刻,物体与影长成正比可得,根据AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的长,由BE=BD+DE可求出BE的长,根据求出AB的长即可.【题目详解】延长和相交于点,则就是树影长的一部分,∵某一时刻测得高为的竹竿影长为,∴,∵AB//CD,∴△AEB∽△CED,∴,∴,∴,∴,∴,∴即树高为米.【题目点拨】本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键.21、,.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【题目详解】原式•.当x=tan60°﹣tan45°1时,原式.【题目点拨】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解题分析】分析:分析:(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C与D的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.23、(1)k=4;(1)点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解题分析】(1)先求出OA=1,结合tan∠AHO=1可得OH的长,即可得知点M的横坐标,代入直线解析式可得点M坐标,代入反比例解析式可得k的值;

(1)分AM=AP和AM=PM两种情况分别求解可得;

(2)先求出点N(4,1),延长MN交x轴于点C,待定系数法求出直线MN解析式为y=-x+3.据此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再进一步求解可得.【题目详解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=1x+1上,∴点M的纵坐标为4,即M(1,4),∵点M在y=上,∴k=1×4=4;(1)①当AM=AP时,∵A(0,1),M(1,4),∴AM=,则AP=AM=,∴此时点P的坐标为(0,1﹣)或(0,1+);②若AM=PM时,设P(0,y),则PM=,∴=,解得y=1(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)∵点N(a,1)在反比例函数y=(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有解得,∴直线MN的解析式为y=﹣x+3.∵点C是直线y=﹣x+3与x轴的交点,∴点C的坐标为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论