版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市青阳片数学九上期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10 B.4 C.15 D.92.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A. B.8 C.10 D.163.抛物线的对称轴是()A.直线 B.直线C.直线 D.直线4.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为()A. B. C. D.5.如图,在中,若,则的长是()A. B. C. D.6.函数的图象如图所示,那么函数的图象大致是()A. B. C. D.7.如图所示,在平面直角坐标系中,已知点,,,以某点为位似中心,作出的位似图形,则位似中心的坐标为()A. B. C. D.8.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.9.为坐标原点,点、分别在轴和轴上,的内切圆的半径长为()A. B. C. D.10.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且11.如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为()A.70° B.65° C.60° D.55°12.二位同学在研究函数(为实数,且)时,甲发现当0<<1时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则()A.甲、乙的结论都错误 B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确 D.甲的结论错误,乙的结论正确二、填空题(每题4分,共24分)13.点A(1,-2)关于原点对称的点A1的坐标为________.14.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.15.如图,⊙O的半径OA长为6,BA与⊙O相切于点A,交半径OC的延长线于点B,BA长为,AH⊥OC,垂足为H,则图中阴影部分面积为_____.(结果保留根号)16.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.17.将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为_______________________.18.若,则______.三、解答题(共78分)19.(8分)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.20.(8分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.21.(8分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.22.(10分)如图,抛物线过原点,且与轴交于点.(1)求抛物线的解析式及顶点的坐标;(2)已知为抛物线上一点,连接,,,求的值;(3)在第一象限的抛物线上是否存在一点,过点作轴于点,使以,,三点为顶点的三角形与相似,若存在,求出满足条件的点的坐标;若不存在,请说明理由.23.(10分)在正方形和等腰直角中,,是的中点,连接、.(1)如图1,当点在边上时,延长交于点.求证:;(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.24.(10分)如图,学校教学楼上悬挂一块长为的标语牌,即.数学活动课上,小明和小红要测量标语牌的底部点到地面的距离.测角仪支架高,小明在处测得标语牌底部点的仰角为,小红在处测得标语牌顶部点的仰角为,,依据他们测量的数据能否求出标语牌底部点到地面的距离的长?若能,请计算;若不能,请说明理由(图中点,,,,,,在同一平面内)(参考数据:,,25.(12分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.26.解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据平行线分线段成比例定理列出比例式,计算即可.【题目详解】解:∵DE∥BC,∴AEEC=ADDB解得,EC=4,故选:B.【题目点拨】考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2、C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF∽△ABC,再根据相似三角形的对应边成比例可解得BC的长,而在▱ABCD中,AD=BC,问题得解.【题目详解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD是平行四边形,∴AD=BC=1.【题目点拨】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.3、C【解题分析】用对称轴公式即可得出答案.【题目详解】抛物线的对称轴,故选:C.【题目点拨】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.4、D【分析】根据菱形与的圆的对称性到△AOE为等边三角形,故可利用扇形AOE的面积减去△AOE的面积得到需要割补的面积,再利用圆的面积减去4倍的需要割去的面积即可求解.【题目详解】∵菱形中,已知,,连接AO,BO,∴∠ABO=30°,∠AOB=90°,∴∠BAO=60°,又AO=EO,∴△AOE为等边三角形,故AE=EO=AB=2∴r=2∴S扇形AOE==S△AOE===∴图中阴影部分的面积=×22-4(-)=故选D.【题目点拨】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.5、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【题目详解】解:∵,∴,∵,∴,∵,∴.【题目点拨】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.6、D【解题分析】首先由反比例函数的图象位于第二、四象限,得出k<0,则-k>0,所以一次函数图象经过第二四象限且与y轴正半轴相交.【题目详解】解:反比例函数的图象在第二、四象限,函数的图象应经过第一、二、四象限.故选D.【题目点拨】本题考查的知识点:
(1)反比例函数的图象是双曲线,当k<0时,它的两个分支分别位于第二、四象限.
(2)一次函数y=kx+b的图象当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限.7、C【分析】直接利用位似图形的性质得出位似中心.【题目详解】如图所示,点P即为位似中点,其坐标为(2,2),故答案为:(2,2).【题目点拨】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键.8、C【解题分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【题目详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【题目点拨】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.9、A【分析】先运用勾股定理求得的长,证得四边形为正方形,设半径为,利用切线长定理构建方程即可求解.【题目详解】如图,过内心C作CD⊥AB、CE⊥AO、CF⊥BO,垂足分别为D、E、F,∵,∴,,∵CE⊥AO、CF⊥BO,∴四边形为正方形,设半径为,则∵AB、AO、BO都是的切线,∴,,∴,即:,解得:,故选:A.【题目点拨】本题考查了切线长定理,勾股定理,证得四边形为正方形以及利用切线长定理构建方程是解题的关键.10、B【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【题目详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【题目点拨】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.11、B【分析】连接OC、OD,利用圆心角、弧、弦的关系以及圆周角定理求得∠AOD=50°,然后根据的等腰三角形的性质以及三角形内角和定理即可求得∠DAE=65°.【题目详解】解:连接OC、OD,∵AD=CD,∴,∴∠AOD=∠COD,∵∠AOC=2∠B=2×50°=100°,∴AOD=50°,∵OA=OD,∴∠DAO=∠ADO=,即∠DAE=65°,故选:B.【题目点拨】本题考查了圆中弦,弧,圆心角之间的关系,圆周角定理和三角形内角和,解决本题的关键是正确理解题意,能够熟练掌握圆心角,弧,弦之间的关系.12、D【分析】先根据函数的解析式可得顶点的横坐标,结合判断出横坐标可能取负值,从而判断甲不正确;再通过方程的根的判别式判断其根的情况,从而判断乙的说法.【题目详解】,原函数定为二次函数甲:顶点横坐标为,,所以甲不正确乙:原方程为,化简得:必有两个不相等的实数根,所以乙正确故选:D.【题目点拨】本题考查二次函数图象的性质、顶点坐标、一元二次方程的根的判别式,对于一般形式有:(1)当,方程有两个不相等的实数根;(2)当,方程有两个相等的实数根;(3)当,方程没有实数根.二、填空题(每题4分,共24分)13、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【题目详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【题目点拨】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.14、5≤d≤1.【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可.【题目详解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非负数,∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴对称轴为直线a=0,∴a=0时,最小值=5,a=2时,最大值=22+5=1,∴5≤d≤1.故答案为:5≤d≤1.【题目点拨】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式.15、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根据阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积,计算即可.【题目详解】∵BA与⊙O相切于点A,∴AB⊥OA,∴∠OAB=90°,∵OA=6,AB=6,∴tan∠B=,∴∠B=30°,∴∠O=60°,∴∠OAH=30°,∴OH=OA=3,∴AH=3,∴阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积=﹣×3×3=;故答案为:.【题目点拨】此题考查圆的性质,直角三角形中30°角所对的直角边等于斜边的一半,扇形面积公式,三角函数.16、cm【解题分析】试题分析:因为OE=OF=EF=10(cm),所以底面周长=10π(cm),将圆锥侧面沿OF剪开展平得一扇形,此扇形的半径OE=10(cm),弧长等于圆锥底面圆的周长10π(cm)设扇形圆心角度数为n,则根据弧长公式得:10π=,所以n=180°,即展开图是一个半圆,因为E点是展开图弧的中点,所以∠EOF=90°,连接EA,则EA就是蚂蚁爬行的最短距离,在Rt△AOE中由勾股定理得,EA2=OE2+OA2=100+64=164,所以EA=2(cm),即蚂蚁爬行的最短距离是2(cm).考点:平面展开-最短路径问题;圆锥的计算.17、y=-x2+5【分析】根据二次函数的图像平移方法“左加右减,上加下减”可直接进行求解.【题目详解】由将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为;故答案为.【题目点拨】本题主要考查二次函数的图像平移,熟练掌握二次函数的图像平移方法是解题的关键.18、-1【分析】由可得,,再代入代数式计算即可.【题目详解】∵,∴,∴原式=,故填:-1.【题目点拨】本题考查比例的基本性质,属于基础题型.三、解答题(共78分)19、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=1,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【题目详解】解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值为;故答案为:;(2)如图2,在AB上截取BF=2,连接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF=,∴AP+PC的值最小值为2,故答案为:2;(3)如图3,延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=1,FC=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=1,FM=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值为.【题目点拨】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..20、(1)随机(2)【解题分析】试题分析:(1)直接利用随机事件的定义分析得出答案;(2)利用树状图法画出图象,进而利用概率公式求出答案.试题解析:(1)“其中有1个球是黑球”是随机事件;故答案为随机;(2)如图所示:,一共有20种可能,2个球颜色相同的有8种,故2个球颜色相同的概率为:=.考点:列表法与树状图法.21、销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【分析】根据“单件利润×销售量=总利润”可列一元二次方程求解,结合题意取舍可得【题目详解】解:设销售单价为x元时,每天的销售利润达到4000元,由题意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因为晨光文具店销售单价不低于成本,且商家尽量让利顾客,所以x2=90不符合题意舍去,故x=70,答:销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【题目点拨】本题主要考查一元二次方程的应用,理解题意确定相等关系,并据此列出方程是解题的关键.22、(1)抛物线的解析式为;顶点的坐标为;(2)3;(3)点的坐标为或.【分析】(1)用待定系数法即可求出抛物线的解析式,进而即可求出顶点坐标;(2)先将点C的横坐标代入抛物线的解析式中求出纵坐标,根据B,C的坐标得出,,从而有,最后利用求解即可;(3)设为.由于,所以当以,,三点为顶点的三角形与相似时,分两种情况:或,分别建立方程计算即可.【题目详解】解:(1)∵抛物线过原点,且与轴交于点,∴,解得.∴抛物线的解析式为.∵,∴顶点的坐标为.(2)∵在抛物线上,∴.作轴于,作轴于,则,,∴,.∴.∵,.∴.(3)假设存在.设点的横坐标为,则为.由于,所以当以,,三点为顶点的三角形与相似时,有或∴或.解得或.∴存在点,使以,,三点为顶点的三角形与相似.∴点的坐标为或.【题目点拨】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,相似三角形的性质是解题的关键.23、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.【分析】(1)利用已知条件易证,则有,,从而有,再利用直角三角形的斜边中线的性质即可得出结论;(2)由已知条件易证,由全等三角形的性质证明,最后利用直角三角形的斜边中线的性质即可得出结论;(3)由已知条件易证,由全等三角形的性质证明,最后利用等腰三角形的性质和特殊角的三角函数值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碳中和路径-洞察分析
- 物联网安全-第1篇浅析篇-洞察分析
- 文言文阅读策略-洞察分析
- 2024-2025学年山东省泰安市高二上学期11月期中模拟练习一物理试题(解析版)
- 膝关节韧带损伤康复生物力学-洞察分析
- 桩基施工质量通病及预防措施
- 2023年项目管理人员安全培训考试题含完整答案(必刷)
- 体育社会组织发展-洞察分析
- 2023年-2024年项目部管理人员安全教育培训试题及1套完整答案
- 2023年-2024年岗位安全教育培训试题附参考答案【模拟题】
- 2024-2030年中国清洁供热行业发展趋势与投资前景预测报告版
- 2025届上海市交大附中嘉定分校物理高二上期末达标检测试题含解析
- 放飞心灵 激扬青春-中职生心理健康学习通超星期末考试答案章节答案2024年
- 行政事业单位内部控制规范专题讲座
- 不良反应事件及严重不良事件处理的标准操作规程药物临床试验机构GCP SOP
- 2024年6月浙江高考历史试卷(含答案解析)
- 保密工作会议领导讲话稿
- DB6101-T 3196-2024 生活无着的流浪乞讨人员站内救助服务规范
- 货物采购供货方案(技术方案)
- 《企业人力资源管理师》课件-2.1人员招聘的程序与信息发布
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
评论
0/150
提交评论