广东省中学山市2024届数学九上期末考试模拟试题含解析_第1页
广东省中学山市2024届数学九上期末考试模拟试题含解析_第2页
广东省中学山市2024届数学九上期末考试模拟试题含解析_第3页
广东省中学山市2024届数学九上期末考试模拟试题含解析_第4页
广东省中学山市2024届数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中学山市2024届数学九上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的个数有()A.1个 B.2个 C.3个 D.4个2.二次函数在下列()范围内,y随着x的增大而增大.A. B. C. D.3.如图,已知一组平行线,被直线、所截,交点分别为、、和、、,且,,,则()A.4.4 B.4 C.3.4 D.2.44.如图,四边形ABCD内接于,它的一个外角,分别连接AC,BD,若,则的度数为()A. B. C. D.5.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有()A.8个 B.7个 C.3个 D.2个6.下列语句,错误的是()A.直径是弦 B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心 D.平分弧的半径垂直于弧所对的弦7.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,8.在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米 B.米 C.米 D.米9.如图,在矩形中,于F,则线段的长是()A. B. C. D.10.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.二、填空题(每小题3分,共24分)11.在△ABC中,tanB=,BC边上的高AD=6,AC=3,则BC长为_____.12.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.13.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.14.已知实数a、b、c在数轴上的位置如图所示,化简=_____.15.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.16.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.17.抛物线开口向下,且经过原点,则________.18.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x-2-1012345y50-3-4-30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论是_________(填上正确的序号)三、解答题(共66分)19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.20.(6分)已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,且点B的坐标为.(1)求反比例函数的表达式;(2)点在反比例函数的图象上,求△AOC的面积;(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.21.(6分)已知关于x的一元二次方程x2-3x+m=1.(1)当m为何值时,方程有两个相等的实数根;(2)当时,求方程的正根.22.(8分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.24.(8分)如图,在中,,点从点出发,以的速度向点移动,点从点出发,以的速度向点移动.如果两点同时出发,经过几秒后的面积等于?25.(10分)如图,P是平面直角坐标系中第四象限内一点,过点P作PA⊥x轴于点A,以AP为斜边在右侧作等腰Rt△APQ,已知直角顶点Q的纵坐标为﹣2,连结OQ交AP于B,BQ=2OB.(1)求点P的坐标;(2)连结OP,求△OPQ的面积与△OAQ的面积之比.26.(10分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.(1)如图①,点恰好在上,求证:∽;(2)如图②,点在矩形内,连接,若,求的面积;(3)若以点、、为顶点的三角形是直角三角形,则的长为.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【题目详解】(1)是轴对称图形,不是中心对称图形.不符合题意;(2)不是轴对称图形,是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,也是中心对称图形,符合题意;故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.2、C【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【题目详解】,∵图像的对称轴为x=1,a=-1,∴当x时,y随着x的增大而增大,故选:C.【题目点拨】此题考查二次函数的性质,当a时,对称轴左减右增.3、D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【题目详解】解:∵∴即解得:EF=2.4故答案为D.【题目点拨】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.4、A【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.【题目点拨】本题考查了圆内接四边形的性质,以及圆周角定理的推论,熟知圆内接四边形的对角互补是解答此题的关键.也考查了等腰三角形的性质以及三角形内角和定理.5、A【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数.【题目详解】解:∵共摸了100次球,发现有80次摸到红球,∴摸到红球的概率估计为0.80,∴口袋中红球的个数大约10×0.80=8(个),故选:A.【题目点拨】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法是关键.6、B【分析】将每一句话进行分析和处理即可得出本题答案.【题目详解】A.直径是弦,正确.B.∵在同圆或等圆中,相等的圆心角所对的弧相等,∴相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【题目点拨】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.7、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【题目详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【题目点拨】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.8、D【分析】根据在同一时刻,物高和影长成正比,由已知列出比例式即可求得结果.【题目详解】解:∵在同一时刻,∴小强影长:小强身高=大树影长:大树高,即0.8:1.6=4.8:大树高,解得大树高=9.6米,故选:D.【题目点拨】本题考查了相似三角形在测量高度是的应用,把实际问题抽象到相似三角形中,利用相似三角形的性质解决问题是解题的关键是.9、C【分析】根据矩形的性质和勾股定理求出,再由面积法求出的长即可.【题目详解】解:四边形是矩形,,,,的面积,;故选:.【题目点拨】本题考查了矩形的性质、勾股定理、直角三角形的面积,熟练掌握矩形的性质,熟记直角三角形的面积求法是解题的关键.10、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【题目详解】平移后的抛物线为故答案为A.【题目点拨】此题主要考查抛物线平移的性质,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、5或1【分析】分两种情况:AC与AB在AD同侧,AC与AB在AD的两侧,在Rt△ABD中,通过解直角三角形求得BD,用勾股定理求得CD,再由线段和差求BC便可.【题目详解】解:情况一:当AC与AB在AD同侧时,如图1,

∵AD是BC边上的高,AD=6,tanB=,AC=3

∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD-CD=8-3=5;

情况二:当AC与AB在AD的两侧,如图2,

∵AD是BC边上的高,AD=6,tanB=,AC=3

∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD+CD=8+3=1;

综上,BC=5或1.

故答案为:5或1.【题目点拨】本题主要考查了解直角三角形的应用题,关键是分情况讨论,比较基础,容易出错的地方是漏解.12、或.【解题分析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角.故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形.因此,本题需要按以下两种情况分别求解.(1)当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位线,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位线,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.13、100【解题分析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.14、﹣a+b【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【题目详解】解:由图可知:a<b<0<c,而且,

∴a+c<0,b+c<0,

∴,

故答案为:.【题目点拨】本题考查了二次根式的性质与化简,绝对值的性质,根据数轴判断出a、b、c的情况是解题的关键.15、1【分析】根据题意,讨论当k=0时,符合题意,当时,一元二次方程有两个相等的实数根即,据此代入系数,结合完全平方公式解题即可.【题目详解】当k=0,方程为一元一次方程,没有两个实数根,故关于的方程有两个相等的实数根,即即故答案为:1;.【题目点拨】本题考查一元二次方程根与系数的关系、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.16、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【题目详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【题目点拨】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.17、【解题分析】把原点(0,0)代入y=(k+1)x2+k2﹣9,可求k,再根据开口方向的要求检验.【题目详解】把原点(0,0)代入y=(k+1)x2+k2﹣9中,得:k2﹣9=0解得:k=±1.又因为开口向下,即k+1<0,k<﹣1,所以k=﹣1.故答案为:﹣1.【题目点拨】主要考查了二次函数图象上的点与二次函数解析式的关系.要求掌握二次函数图象的性质,并会利用性质得出系数之间的数量关系进行解题.18、(2)(3)【分析】根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【题目详解】由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为−4;故(1)小题错误;根据表格数据,当−1<x<3时,y<0,所以,−<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(−1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故答案为:(2)(3).【题目点拨】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.三、解答题(共66分)19、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;

(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【题目详解】解:(1)根据“同弧所对的圆周角相等”,

得∠A=∠D,∠C=∠ABD,

∴△AEC∽△DEB

(2)∵CD⊥AB,O为圆心,

∴BE=AB=3,

设⊙O的半径为r,

∵DE=1,则OE=r−1,

在Rt△OEB中,

由勾股定理得:OE2+EB2=OB2,

即:(r−1)2+32=r2,

解得r=1,即⊙O的半径为1.【题目点拨】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.20、(1);(2);(3)(-1,0)、(0,0)、(0,1).【题目详解】(1)一次函数的图象过点B,∴∴点B坐标为∵反比例函数的图象经过点B反比例函数表达式为(2)设过点A、C的直线表达式为,且其图象与轴交于点D∵点在反比例函数的图象上∴∴点C坐标为∵点B坐标为∴点A坐标为解得:过点A、C的直线表达式为∴点D坐标为∴(3)①当点P在x轴上时,设P(m,0)∵AC=,AP=,CP=,∴=或=,解得:m=0或-1②当点P在y轴上时,设P(0,n),∵AC=,AP=,CP=,∴=或=解得:n=0或1综上所述:点P的坐标可能为、、21、(1)m=;(2).【分析】(1)若一元二次方程有两等根,则根的判别式△=b2-4ac=1,建立关于m的方程,求出m的取值.(2)把m的值代入方程,利用求根公式可解出方程,求得方程的正根.【题目详解】解:(1)∵b2-4ac=9-4m,∴9-4m=1时,方程有两个相等的实数根,解得:m=,即m=时,方程有两个相等的实数根.(2)当m=-时,b2-4ac=9-4m=9+3=12>1,∴由求根公式得:;∵,∴,∴所求的正根为.【题目点拨】本题主要考查了根的判别式和利用求根公式解一元二次方程.22、(1)∠DAF=36°;(2)证明见解析;(3)证明见解析.【解题分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【题目详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【题目点拨】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;

(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;

(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【题目详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为==.【题目点拨】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.24、经过秒后的面积等于【分析】首先构建直角三角形,求出各边长,然后利用面积构建一元二次方程,求解即可.【题目详解】过点作于,则,如图所示:设经过秒后的面积等于,则.根据题意,.当时,,不合题意舍去,取.答:经过秒后的面积等于.【题目点拨】此题主要考查三角形中的动点问题,解题关键是利用面积构建一元二次方程.25、(1)点P的坐标(1,﹣4);(2)△OPQ的面积与△OAQ的面积之比为1.【分析】(1)过Q作QC⊥x轴于C,先求得AC=QC=2、AQ=2、AP=4,然后再由AB∥CQ,运营平行线等分线段定理求得OA的长,最后结合AP=4即可解答;(2)先说明△OAB∽△OCQ,再根据相似三角形的性质求得AB和PB的长,然后再求出△OPQ和△OAQ的面积,最后作比即可.【题目详解】解:(1)过Q作QC⊥x轴于C,∵△APQ是等腰直角三角形,∴∠PAQ=∠CAQ=41°,∴AC=QC=2,AQ=2,AP=4,∵AB∥CQ,∴,∴OA=AC=1,∴点P的坐标(1,﹣4);(2)∵AB∥CQ,∴△OAB∽△OCQ,∴,∴AB=CQ=,∴PB=,∴S△OAQ=OA•CQ=×1×2=1,S△OPQ=PB•OA+PB•AC=1,∴△OPQ的面积与△OAQ的面积之比=1.【题目点拨】本题考查了一次函数的图像、相似三角形的判定与性质、平行线等分线段定理以及三角形的面积,掌握相似三角形的判定和性质是解答本题的关键.26、(1)见解析;(2)的面积为;(3)、5、1、【分析】(1)先说明∠CEF=∠AFB和,即可证明∽;(2)过点作交与点,交于点,则;再结合矩形的性质,证得△FGE∽△AHF,得到AH=5GF;然后运用勾股定理求得GF的长,最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论