六种方法破解求函数值域问题_第1页
六种方法破解求函数值域问题_第2页
六种方法破解求函数值域问题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六种方法破解求函数值域问题函数的值域是函数的重要性质之一,它的求法很多,下面结合实例进行例析。一、反函数法利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域。例如求函数的值域,这种类型的题目也可采用分离常数法。例1.求函数的值域。解:由解得,因为,所以,则,故函数的值域为。二、换元法换元法主要是把题目中出现多次的一个复杂的部分看作一个整体,通过简单的换元把复杂函数变为简单函数,我们使用换元法时,要特别注意换元后新元的范围(即定义域)。换元法是几种常用的数学方法之一,在求函数的值域中发挥很大作用。例2.若,求函数的值域。解:,因为,则,于是,故的值域是。三、分离常数法求一次分式函数值域可用分离常数法,此类问题有时也可以利用反函数法。例3.求函数的值域。1解:,因为,则,故,通过方程有实数根,根据判别函数的值域为。四、判别式法把函数转化成关于x的二次方程式,从而求得原函数的值域,形如求函数(、不同时为0)的值域,常用此方法求解。注意这类函数的定义域一般是实数集时用这种方法一般不会出错,否则不宜用这种方法。例4.求函数的值域。解:原式变形为。①当时,方程无解;②当时,因为,所以,解得。综合①②得,函数的值域为。五、函数的单调性法确定函数在定义域(或某个定义域的子集)上的单调性,借助单调性求出函数的值域。例5.求函数的值域。解:因为当x增大时,随的增大而减少,随的增大而增大,所以函数在定义域上是增函数。故,所以函数的值域为。2六、利用有界性利用函数解析式中局部式子的有界性来求整个函数的值域也是常用的求值域的方法。例6.求函数的值域。解:由函数的解析式可以知道函数的定义域为R,对函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论