版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省定兴县数学九年级第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1 B.y=5(x+2)2+1 C.y=5(x﹣2)2﹣1 D.y=5(x+2)2﹣12.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是().A. B. C. D.3.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>04.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()年龄1314151617人数12231A.16,15 B.16,14 C.15,15 D.14,155.如图,正方形的边长为4,点在的边上,且,与关于所在的直线对称,将按顺时针方向绕点旋转得到,连接,则线段的长为()A.4 B. C.5 D.66.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:27.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°8.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m9.如图,把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5 B.2:5 C.:2 D.:10.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.二、填空题(每小题3分,共24分)11.一元二次方程有一个根为,二次项系数为1,且一次项系数和常数项都是非0的有理数,这个方程可以是_________.12.如图,ΔABP是由ΔACD按顺时针方向旋转某一角度得到的,若∠BAP=60°,则在这一旋转过程中,旋转中心是____________,旋转角度为____________.13.如图,抛物线(是常数,),与轴交于两点,顶点的坐标是,给出下列四个结论:①;②若,,在抛物线上,则;③若关于的方程有实数根,则;④,其中正确的结论是__________.(填序号)14.如图,在边长为的等边三角形ABC中,以点A为圆心的圆与边BC相切,与边AB、AC相交于点D、E,则图中阴影部分的面积为_______.15.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.16.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_____.17.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.18.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.三、解答题(共66分)19.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.20.(6分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.21.(6分)先化简,再从0、2、4、﹣1中选一个你喜欢的数作为x的值代入求值.22.(8分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.23.(8分)已知9a2-4b2=0,求代数式--的值.24.(8分)用适当的方法解方程(1)(2)25.(10分)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)26.(10分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题解析:将抛物线向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是故选A.点睛:二次函数图像的平移规律:左加右减,上加下减.2、C【分析】根据对称轴是直线得出,观察图象得出,,进而可判断选项A,根据时,y值的大小与可判断选项C、D,根据时,y值的大小可判断选项B.【题目详解】由题意知,,即,由图象可知,,,∴,∴,选项A正确;当时,,选项D正确;∵,∴,选项C错误;当时,,选项B正确;故选C.【题目点拨】本题考查二次函数的图象与系数a,b,c的关系,学会取特殊点的方法是解本题的关键.3、D【解题分析】分析:根据抛物线的开口、对称轴及与y轴的交点的位置,可得出a<1、c>1、b>﹣2a,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<1,﹣>1,c>1,∴b>﹣2a,∴b+2a>1.故选D.点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b>﹣2a是解题的关键.4、A【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【题目详解】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【题目点拨】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.5、C【分析】如图,连接BE,根据轴对称的性质得到AF=AD,∠EAD=∠EAF,根据旋转的性质得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根据全等三角形的性质得到FG=BE,根据正方形的性质得到BC=CD=AB=1.根据勾股定理即可得到结论.【题目详解】解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故选:C.【题目点拨】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6、D【解题分析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.7、C【解题分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【题目详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.8、A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.【题目详解】解:如图,根据题意知AB=130米,tanB==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【题目点拨】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.9、A【分析】首先分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【题目详解】如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=41°,∴OB=AB=1,由勾股定理得:,∴扇形的面积是;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=41°,∵BC=1,∴MC=MB=,∴⊙M的面积是,∴扇形和圆形纸板的面积比是,即圆形纸片和扇形纸片的面积比是4:1.故选:A.【题目点拨】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.10、B【解题分析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【题目详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【题目点拨】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.二、填空题(每小题3分,共24分)11、【分析】根据有理系数一元二次方程若有一根为,则必有另一根为求解即可.【题目详解】根据题意,方程的另一个根为,∴这个方程可以是:,即:,故答案是:,【题目点拨】本题考查了一元二次方程根与系数的关系,正确理解“有理系数一元二次方程若有一根为,则必有另一根为”是解题的关键.12、,【分析】根据条件得出AD=AP,AC=AB,确定旋转中心,根据条件得出∠DAP=∠CAB=90°,确定旋转角度数.【题目详解】解:∵△ABP是由△ACD按顺时针方向旋转而得,∴△ABP≌△ACD,∴∠DAC=∠PAB=60°,AD=AP,AC=AB,∴∠DAP=∠CAB=90°,∴△ABP是△ACD以点A为旋转中心顺时针旋转90°得到的.故答案为:A,90°【题目点拨】本题考查旋转的性质,明确旋转前后的图形大小和形状不变,正确确定对应角,对应边是解答此题的关键.13、①②④【分析】根据二次函数的图象和性质逐一对选项进行分析即可.【题目详解】①∵∴即,故①正确;②由图象可知,若,,在抛物线上,则,故②正确;③∵抛物线与直线有交点时,即有解时,要求所以若关于的方程有实数根,则,故③错误;④当时,∵∴,故④正确.故答案为①②④【题目点拨】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.14、【分析】首先求得圆的半径,根据阴影部分的面积=△ABC的面积−扇形ADE的面积即可求解.【题目详解】解:设以点A为圆心的圆与边BC相切于点F,连接AF,如图所示:
则AF⊥BC,
∵△ABC是等边三角形,
∴∠B=60°,BC=AB=,
∴AF=AB•sin60°=×=3,
∴阴影部分的面积=△ABC的面积−扇形ADE的面积=××3−=.
故答案为:.【题目点拨】本题主要考查了扇形的面积的计算、三角函数、切线的性质、等边三角形的性质;熟练掌握切线的性质,由三角函数求出AF是解决问题的关键.15、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【题目详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【题目点拨】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.16、1.【分析】根据概率公式列方程计算即可.【题目详解】解:根据题意得,解得n=1,经检验:n=41是分式方程的解,故答案为:1.【题目点拨】题考查了概率公式的运用,理解用可能出现的结果数除以所有可能出现的结果数是解答本题的关键.17、(,).【分析】连接PQ、OP,如图,根据切线的性质得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂线段最短,当OP最小时,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到结论.【题目详解】连接PQ、OP,如图,∵直线OQ切⊙P于点Q,∴PQ⊥OQ,在Rt△OPQ中,OQ==,当OP最小时,OQ最小,当OP⊥直线y=2时,OP有最小值2,∴OQ的最小值为=.设点Q的横坐标为a,∴S△OPQ=×=×2×|a,∴a=,∴Q点的纵坐标==,∴Q点的坐标为(,),故答案为(,).【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.18、3【分析】由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【题目详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3【题目点拨】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.三、解答题(共66分)19、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【题目详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为==.【题目点拨】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.20、AD=1.【解题分析】根据圆内接四边形的对角互补得出∠C=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.解Rt△AEB,得出BE=AB•cos∠ABE=,AE=,那么AF=AE-EF=.再证明∠ABC+∠ADF=90°,根据互余角的互余函数相等得出sin∠ADF=cos∠ABC=.解Rt△ADF,即可求出AD==1.【题目详解】解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°-∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE=,∴AF=AE-EF=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD=.【题目点拨】本题考查了圆内接四边形的性质,矩形的判定与性质,勾股定理,解直角三角形,求出AF=以及sin∠ADF=是解题的关键.21、原式=x,当x=﹣1时,原式=﹣1【分析】先对分子分母分别进行因式分解,能约分的先约分,再算括号,化除法为乘法,再进行约分;再从0、2、4、﹣1中选使得公分母不为0的数值代入最简分式中即可.【题目详解】解:原式∵x﹣2≠0,x﹣4≠0,x≠0∴x≠2且x≠4且x≠0∴当x=﹣1时,原式=﹣1.【题目点拨】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22、(1);(2)π﹣.【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【题目详解】解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=SRt△OEF==.∴S阴影=S扇形OEF﹣SRt△OEF=π﹣.【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.23、±3【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,已知等式利用平方差公式化简,整理得到2b=3a或2b=-3a,代入计算即可求出值.【题目详解】原式=--====-2·,∵9a2-4b2=0,∴=,∴=±,∴原式=-2×=-3或原式=.点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24、(1);(2).【分析】(1)利用因式分解法解方程即可;(2)利用直接开方法解方程即可.【题目详解】(1),,,或,;(2),,,.【题目点拨】本题考查了解一元二次方程,主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.25、11.3m.【分析】连接OC,求出OC和OE,根据勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023七年级英语下册 Unit 10 I'd like some noodles说课稿 (新版)人教新目标版
- 消防控制室管理制度
- 2024-2025学年初中同步测控优化设计物理八年级上册配人教版专项训练含答案
- 法国课件湘教版
- 简讯格式与范文
- 西京学院《机械工程测试技术》2022-2023学年第一学期期末试卷
- 西京学院《产品造型材料与工艺》2023-2024学年第一学期期末试卷
- 西华师范大学《中国近现代政治思想史》2023-2024学年第一学期期末试卷
- 西华师范大学《信息技术教育应用》2023-2024学年第一学期期末试卷
- 西华师范大学《统计计算与软件》2023-2024学年第一学期期末试卷
- 人教版小学音乐二年级下册(简谱)火车开啦-教学课件
- 自动体外除颤仪(AED)培训教材-2
- 五年级主题班会 家长会 课件(共28张PPT)
- 课件4.2 氯化工艺安全
- 小学生一、二、三年级家庭奖罚制度表
- 老版入团志愿书表格(空白)
- 海报设计课件完整版
- 2023年人人急救全套试卷答案
- 企业网络规划设计与实现毕业论文
- 吊装作业安全知识课件
- 《制作简易显微镜》实验报告单
评论
0/150
提交评论