2024届辽宁省沈阳市第一六六中学九年级数学第一学期期末检测试题含解析_第1页
2024届辽宁省沈阳市第一六六中学九年级数学第一学期期末检测试题含解析_第2页
2024届辽宁省沈阳市第一六六中学九年级数学第一学期期末检测试题含解析_第3页
2024届辽宁省沈阳市第一六六中学九年级数学第一学期期末检测试题含解析_第4页
2024届辽宁省沈阳市第一六六中学九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省沈阳市第一六六中学九年级数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,抛物线与轴交于点,对称轴为,则下列结论中正确的是()A.B.当时,随的增大而增大C.D.是一元二次方程的一个根2.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.3.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.34.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.5.如图,在同一平面直角坐标系中,反比例函数与一次函数y=kx−1(k为常数,且k≠0)的图象可能是()A. B. C. D.6.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.7.下列图形是中心对称图形而不是轴对称图形的是()A. B. C. D.8.如图等边△ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s的速度向点C运动,点P沿A﹣B﹣C以2cm/s的速度也向点C运动,直到到达点C时停止运动,若△APQ的面积为S(cm2),点Q的运动时间为t(s),则下列最能反映S与t之间大致图象是()A. B.C. D.9.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上10.下列成语所描述的事件是必然事件的是()A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长11.关于的方程有实数根,则满足()A. B.且 C.且 D.12.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为_____.14.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC,若sinC=,BC=12,则AD的长_____.15.如图,在等腰直角△ABC中,∠C=90°,将△ABC绕顶点A逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.16.关于x的一元二次方程有两个不相等的实数根,则实数a的取值范围是______.17.若,则=______18.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是_____________.三、解答题(共78分)19.(8分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.20.(8分)已知关于的方程.(1)求证:不论取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为,求该方程的另一个根.21.(8分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,求抛物线的函数表达式;若点是直线下方的抛物线上的动点,求的面积的最大值;若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.22.(10分)如图①,在中,,,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.23.(10分)小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.24.(10分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.25.(12分)新华商场销售某种冰箱,每台进货价为元,市场调研表明:当销售价为元时,平均每天能售出台,而当销售价每降低元时,平均每天就能多售出台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到元,这种冰箱每台应降价多少元?26.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【题目详解】A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选:D.【题目点拨】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.2、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【题目详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【题目点拨】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.3、D【解题分析】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【题目点拨】本题考查二次函数的性质,利用数形结合思想解题是关键.4、C【解题分析】分析:根据题意得△AOB∽△COD,根据相似三角形的性质可求出CD的长.详解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB∽△COD是解题关键.5、B【分析】分k>0和k<0两种情况,分别判断反比例函数的图象所在象限及一次函数y=-kx-1的图象经过的象限.再对照四个选项即可得出结论.【题目详解】当k>0时,-k<0,

∴反比例函数的图象在第一、三象限,一次函数y=kx-1的图象经过第一、三、四象限;

当k<0时,-k>0,

∴反比例函数的图象在第二、四象限,一次函数y=kx-1的图象经过第二、三、四象限.

故选:B.【题目点拨】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.6、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【题目详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【题目点拨】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.7、A【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.【题目点拨】考核知识点:轴对称图形与中心对称图形识别.8、C【分析】根据等边三角形的性质可得,然后根据点P的位置分类讨论,分别求出S与t的函数关系式即可得出结论.【题目详解】解:∵△ABC为等边三角形∴∠A=∠C=60°,AB=BC=AC=4当点P在AB边运动时,根据题意可得AP=2t,AQ=t∴△APQ为直角三角形S=AQ×PQ=AQ×(AP·sinA)=×t×2t×=t2,图象为开口向上的抛物线,当点P在BC边运动时,如下图,根据题意可得PC=2×4-2t=8-2t,AQ=tS=×AQ×PH=×AQ×(PC·sinC)=×t×(8﹣2t)×=t(4﹣t)=-t2+,图象为开口向下的抛物线;故选:C.【题目点拨】此题考查的是根据动点判定函数的图象,掌握三角形面积的求法、二次函数的图象及性质和锐角三角函数是解决此题的关键.9、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【题目详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【题目点拨】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.10、A【解题分析】必然事件就是一定会发生的事件,依据定义即可解决【题目详解】A.水涨船高是必然事件,故正确;B.水中捞月,是不可能事件,故错误;C.一箭双雕是随机事件,故错误D.拔苗助长是不可能事件,故错误故选:A【题目点拨】此题考查随机事件,难度不大11、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【题目详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【题目详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【题目点拨】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.二、填空题(每题4分,共24分)13、π【分析】根据图示知,所以根据弧长公式求得的长.【题目详解】根据图示知,,∴的长为:.故答案为:.【题目点拨】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.14、1【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=,然后利用AD=12x进行计算.【题目详解】在Rt△ADC中,sinC==,设AD=12x,则AC=13x,∴DC==5x,∵cos∠DAC=sinC=,∴tanB=,在Rt△ABD中,∵tanB==,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=,∴AD=12x=1.故答案为1.【题目点拨】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.15、125°【分析】根据等腰直角三角形的性质得到∠CAB=45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【题目详解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【题目点拨】本题考查旋转的性质,关键在于熟练掌握基础性质.16、且【解题分析】由关于x的一元二次方程有两个不相等的实数根,即可得判别式,继而可求得a的范围.【题目详解】关于x的一元二次方程有两个不相等的实数根,,解得:,方程是一元二次方程,,的范围是:且,故答案为:且.【题目点拨】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.17、【分析】可设x=4k,根据已知条件得到y=3k,再代入计算即可得到正确结论.【题目详解】解:∵,∴y=3k,x=4k;代入=故答案为【题目点拨】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.18、【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【题目详解】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为y2=.三、解答题(共78分)19、(1)①;②线段、、之间的数量关系为:,理由见解析;(2),,理由见解析.(3)理由见解析.【分析】(1)①证明△BAD≌△CAE(SAS),可得结论:∠ACE=∠B=60°;②由△BAD≌△CAE,得BD=CE,利用等边三角形的AC=BC=BD+DC等量代换可得结论;(2)如图2,先证明△ABD≌△ACE,得BD=CE,∠ACE=∠B=45°,同理可得结论;(3)如图3,作辅助线,构建如图2的两个等腰直角三角形,已经有一个△ABD,再证明△ACF也是等腰直角三角形,则利用(2)的结论求AC的长.【题目详解】(1)①∵和均为等边三角形,∴,,,∴,即,∴,∴,②线段、、之间的数量关系为:;理由是:由①得:,∴,∵,∴;(2),,理由是:如图2,∵和均为等腰直角三角形,且,∴,,,即,∴,∴,,∵,∴,∵在等腰直角三角形中,,∴;(3)如图3,过作的垂线,交的延长线于点,∵,,,∴,,∵,∴以BD的中点为圆心,为半径作圆,则A,C在此圆上,∴、、、四点共圆,∵恰好平分∴,∴是等腰直角三角形,由(2)得:,∴.【题目点拨】本题是四边形的综合题,考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的性质和判定、四点共圆的判定,圆周角定理,本题还运用了类比的思想,从问题发现到解决问题,第三问有难度,作辅助线,构建等腰直角三角形ACF是关键.20、(1)证明见解析;(2)另一根为-2.【分析】(1)写出根的判别式,配方后得到完全平方式,进行解答;

(2)将代入方程得到的值,再根据根与系数的关系求出另一根.【题目详解】(1)∵,,,∴∴不论取何实数,该方程都有两个不相等的实数根;(2)将代入方程得,,解得:;∴原方程为:,设另一根为,则有,解得:,所以方程的另一个根为.【题目点拨】本题考查了一元二次方程根的判别式,根与系数的关系,一元二次方程(a≠0)的根与有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.21、(1)y=x2+x﹣2;(2)△PBC面积的最大值为2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,点M(﹣1,﹣),△AMC周长的最小值为.【分析】(1)先由抛物线的对称性确定点B坐标,再利用待定系数法求解即可;(2)先利用待定系数法求得直线BC的解析式,然后设出点P的横坐标为t,则可用含t的代数式表示出PE的长,根据面积的和差可得关于t的二次函数,再根据二次函数的性质可得答案;(3)先设D(m,0),然后用m的代数式表示出E点和P点坐标,由条件可得关于m的方程,解出m的值即可得解;(4)要使周长最小,由于AC是定值,所以只要使MA+MC的值最小即可,由于点B是点A关于抛物线对称轴的对称点,则点M就是BC与抛物线对称轴的交点,由于点M的横坐标已知,则其纵坐标易得,再根据勾股定理求出AC+BC,即为周长的最小值.【题目详解】解:(1)∵对称轴为x=﹣1的抛物线与x轴交于A(2,0),B两点,∴B(﹣4,0).设抛物线解析式是:y=a(x+4)(x﹣2),把C(0,﹣2)代入,得:a(0+4)(0﹣2)=﹣2,解得a=,所以该抛物线解析式是:y=(x+4)(x﹣2)=x2+x﹣2;(2)设直线BC的解析式为:y=mx+n,把B(﹣4,0),C(0,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x﹣2,作PQ∥y轴交BC于Q,如图1,设P(t,t2+t﹣2),则Q(t,﹣t﹣2),∴PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,∴S△PBC=S△PBQ+S△PCQ=•PQ•4=﹣t2﹣2t=﹣(t+2)2+2,∴当t=﹣2时,△PBC面积有最大值,最大值为2;(3)设D(m,0),∵DP∥y轴,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴,∴m2+3m=0或m2+5m=0,解得:m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去),∴P(﹣3,﹣)或P(﹣5,);(4)∵点A、B关于抛物线的对称轴对称,∴当点M为直线BC与对称轴的交点时,MA+MC的值最小,如图2,此时△AMC的周长最小.∵直线BC的解析式为y=﹣x﹣2,抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,y=﹣.∴抛物线对称轴上存在点M(﹣1,﹣)符合题意,此时△AMC周长的最小值为AC+BC=.【题目点拨】此题是二次函数综合题,主要考查了利用待定系数法确定函数解析式、二次函数的性质、一元二次方程的解法、二次函数图象上的坐标特征和两线段之和最小等知识,属于常考题型,解题的关键是熟练掌握二次函数的性质和函数图象上点的坐标特征.22、(1)①50;②;(2);(3)AE的最小值.【解题分析】(1)①利用等腰三角形的性质即可解决问题.②证明,,推出即可.(2)如图③中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明即可解决问题.(3)因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值.【题目详解】(1)①如图②中,∵,,∴,②结论:.理由:∵,,∴,∴,∴,∵AE垂直平分线段BC,∴,∴,∵,,∴,∴,∴.故答案为50,.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴,∴,∵,∴.(3)如图④中,作于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值.【题目点拨】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.23、(1);(2)这个游戏规则对双方是不公平的.【分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;

(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【题目详解】(1)列表如下:小亮和小明23422+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.【题目点拨】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)80人(2)见解析(3)375【分析】(1)根据条形统计图和扇形统计图可知,选择文学鉴赏的学生16人,占总体的20%,从而可以求得调查的学生总人数;(2)根据3D打印的百分比和(1)中求得的调查的学生数,可以求得选择3D打印的有多少人,进而可以求得选择数学思维的多少人,从而可以将条形统计图补充完整;(3)根据调查的选择红船

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论