版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§7.BoltzmannStatistics§7.1Thestatisticsexpressionofthermodynamicsquantities7.1.1ThestatisticsexpressionofinternalenergyIntroduceanewfunctionZ1calledpartitionfunctionThenWiththeformula(7.1.1)and(7.1.3)itgets
7.1.2GeneralizedworkGeneralizedforceperformedbyenvironmentfollowsthatForinstance,
Ininfinitesimalquasi-staticprocesstheworkperformedbyenvironmentfollowsthatThetotaldifferentialofisgivenbyRemark!(1)Thefirsttermdenotestheworkperformedbyenvironment;(2)Thesecondtermdenotestheheatabsorbingfromenvironment.
7.1.3ThestatisticsexpressionofentropyBasedonthefirstlawofthermodynamics,withintegralfactor1/TfordQ,itgetsthatWiththeformulas(7.1.4)and(7.1.6)itgetsThetotaldifferentialoflnZ1followsthatThereforedQgetsanotherintegralfactorβ
LetItwillprovethatkisBoltzmannconstant.Comparingtheformula(7.1.10)and(7.1.11)andwiththeformula(7.1.12)onegetsHeretheintegralconstantischosetobezero.
Withlogarithmcalculationfortheformula(7.1.3)itgetsBasedonBoltzmanndistribution,itgetsthereforeComparingwiththeformula(6.6.4)itgets
ThisiscalledBoltzmannrelation.
Remark!Themorethemicrostatenumberis,thebiggertheentropyis.(2)ForBoseandFermisystemssatisfyingtheclassicallimitedcondition,theentropyisgivenby
7.1.4Thestatisticsexpressionoffreeenergy
F=U-TSThisformula
is
appliedtolocalsystems.or
Thisformula
is
appliedtoBoseandFermisystem.
7.1.5TheclassicalstatisticsexpressionWhenΔωl
issmallenoughitfollowsTheinternalenergy,equationofstateandentropyarethesamewithaboveresultsaslongaspartitionfunctionexpression(7.1.18)isapplied.
§7.2The
equationofstateoftheidealgasTheenergyofmonatomicmoleculeInthescopeofdxdydzdpxdpydpz,theprobablemicrostatenumberisgivenbyThereforepartitionfunctionfollowsthat
Withlogarithmcalculationfortheformula(7.2.3)itgetshereisthevolumeoftheidealgas.Remark!(1)TheBoltzmannconstantisobtainedfromcomparingtheformulawithpV=nRT.(2)Forbiatomicmolecule,multi-atomicmolecule,althoughtheenergiesincludetranslationalenergy,rotationalenergyandvibrationalenergy,theformula(7.2.5)suitsforeverycase.
(3)Theresultsarethesamebyusingclassicalstatisticstheory.(4)TheotherexpressionofclassicallimitedconditionisthattheaveragespacebetweenmoleculesismorebiggerthendeBrogliewavelength.
Ifε=3kT/2,
thus,§7.3MaxwellVelocityDistributionLaw7.3.1MaxwellvelocitydistributionTheclassicalexpressionofBoltzmanndistributionNooutfield,Thestatenumberoftranslationofmoleculemasscenterfollowsthat
InthescopeofVanddpx
dpy
dpz
,themoleculenumberfollowsthat
TheparameterαisgivenbyInthescopeofVanddpx
dpy
dpz
,themoleculenumberfollowsthat
Let,denotingthemoleculenumberoftheunitofvolume,thusthemoleculenumberwithinthevelocityscopeofdvx
dvy
dvz
isgivenbyThisformulaisknownverywellandcalledMaxwellvelocitydistributionlaw.
Thevolumeelementofsphericalpolarcoordinatessubstitutesdvx
dvy
dvz
,andintegralforvariablesθandφ,thusthemoleculenumberinunitofvolumeandthevelocityscopeofdvisgivenby
7.3.2ThreecharacteristicvelocityThemostprobablevelocity(vm)μismolemass.(2)Meanvelocity()
(3)Squaremeanroot(vs)7.3.3ApplicationofMaxwellvelocitydistributionlawCalculatethemoleculenumberofcollisioninunitoftimeatunitarea.SolutiondAisaareaelement,
dΓdAdtdenotesthemoleculenumberofcollisionindtatdA.
dΓdAdt=namely
§7.4Energy
EquipartitionTheorem7.4.1Energy
equipartitiontheoremForaclassicalsystemwhichisinequilibriumstatewithtemperatureTtheaveragevalueofeverysquaretermofaparticleenergyequals.
εp
and
εqdenotetheparticlekineticenergyandpotentialenergyrespactivily.herepiismomentum,aiisapositivecoefficient.
Thefirsttermequalszero,itfollowsthat
Potentialenergycanbedenotedassquaretermsbiisapositivecoefficient.Similarlyitgetsthat7.4.2Applicationofenergyequipartitiontheorem(1)MonatomicmoleculegasAccordingtoenergyequipartitiontheoremthemeanenergyis
TheinternalenergyofmonatomicmoleculeoftheidealgasTheheatcapacityasconstantvolumewithTheheatcapacityasconstantpressurewith
(2)BiatomicmoleculegasThefirstterm:translationalenergy;M=m1+m2Thesecondterm:rotationalenergyencirclingcenterofmass,
I=μr2momentofinertia,Thethirdterm:relativemovementenergyoftwoatoms,relativemovementkineticenergy,
u(r)istheinteractionenergyoftwoatoms.ForrigiditybiatomicmoleculeTheinternalenergyandheatcapacityquantitiesfollowsas,,
gasTemperature(k)He2911.660931.673H22891.4071971.453921.597(3)ThesolidTheatomicvibrationinthesolidisconsideredasharmonicoscillationofindependenceeachother.TheenergyofonedegreeoffreedomisTheinternalenergyofthesolidis
U=3NkTTheheatcapacityasconstantvolumewithThisresultisagreementwiththeexperimentalresultofDulong-Petit.
§7.5TheInternalEnergyAndHeatCapacityoftheIdealGas7.5.1Thebasicexpressionofinternalenergyandheatcapacityet,ev
ander
denotetranslationalenergy,vibrationalenergyandrotationalenergyofbiatomicmoleculeidealgas.Thetotalpartitionfunctioncanbewrittenastheproductoftranslationalpartitionfunction,vibrationalpartitionfunction,rotationalpartitionfunction.
TheinternalenergyofbiatomicmoleculeidealgasisTheheatcapacityasconstantvolumewithThetranslationalpartitionfunctionhasbeengivenby
7.5.2Whyisthecontributionofvibrationdegreeoffreedomtoheatcapacitynearlyzerointhecaseofnormaltemperature.Therelativevibrationcanbeconsideredaslinearharmonicoscillation
vibrationalpartitionfunction
Basedonitgets
IntroducevibrationcharacteristictemperatureθvThe
formulas(7.5.8)and(7.5.9)followsas
θv~103K,normaltemperatureT<<θv,thereforeUvand
canbe
approximatelyTheformula(7.5.9’)indicatesthatthecontributionofvibrationdegreeoffreedomtoheatcapacityisnearlyzerointhecaseofnormaltemperature.Energylevelinterval,transitionenergyisverybig,oscillatorcannotbeexcitatedtohighenergylevelandfreezeingroundstate.
7.5.3Whyisnottheheatcapacityofhydrogenagreementwithexperiment?(1)Heteronuclear(CO,NO,HCl)RotationalenergylevelandrotationalpartitionfunctionareIntroducevibrationcharacteristictemperatureθr
Inthecaseofnormaltemperature,,canbeconsideredtobeacontinuousvariable.Thusintegralsubstitutescalculationsum.LetThereforeitgets
(2)ThequestionaboutH2Ortho-hydrogenstate:spinparallel,
oddnumberforl,probabilityis.Parahydrogenstate:spinreverseparallel,evennumberforl,probabilityis.denotetherotationpartitionfunctionsofOrtho-hydrogenandparahydrogenrespectively.H2
isat
thestate
ofhighl.SimilarlyitgetsBecausethemomentofinertiaIofhydrogenissmall,sothevibrationcharacteristictemperatureθrisbig.Inthecaseoflowtemperature(92K),energy
equipartitiontheoremisnotapplicable.7.5.4Whydoesnotthecontributionofelectrontotheheatcapacityofgasbetakenintoaccount.Thedifferencebetweenexcitationstateenergyandgroundstateenergyforaelectronis1~10eV,namely10-19~10-18J,correspondingtemperature104~105K.Itistoohightoexcitingaelectrontoexcitationstate.
7.5.5Calculationthermodynamicsquantitiesbyusingclassicalpartitionfunction.Theenergyofdifferentcorediatomicmoleculeis
WeobtainthatWiththeformulas(7.5.21)-(7.5.23),wehave
§7.6TheEntropyoftheIdealGas7.6.1TheentropyoftheidealgaswithFormonatomicmoleculeidealgaswehave
7.6.2ThechemicalpotentialofthemonatomicmoleculeidealgasAccordingtotheformulas(7.1.16’)and(7.6.4),itgetsFortheidealgas,μ<0
§7.7TheEinsteinTheoryofSolidHeatCapacity3Noscillators:oscillatorenergylevelisIntroducevibrationcharacteristictemperatureθEDotsdenoteexperimentalresult;SolidlinedenotesEinsteintheoryresult.θE=1320KDiscussion:(1)WhenT>>θE,
CV=3Nk(7.7.7)Thisformula
isagreementwithenergyequipartitiontheorem.TheeffectofquantumisneglectedandTheclassicalstatisticsisapplied.(2)WhenT<<θE,Thedifferencebetweenexcitationstateenergyandgroundstateenergyismuchbigsothat3Noscillatorsareingroundstate.
§7.8ParamagnetismSolid
Anespeciallyinterestingapplicationofclassicalstatistics(Boltzmannstatistics)istheparamagneticbehaviorofsubstances.Ifahomogeneousfieldpointsinz-direction,thetotalangularmomentumofamagneticionis1/2.ThemagneticmomentumisTwopossibleenergyare–μBandμB.Thepartitionfunction
ofthissystemis
GeneralizedforceperformedbyenvironmentMagnetizationMis
Discussion:HighTorweakfieldTherelation(7.8.4)isknownasCurie’slaw.(2)LowTorstrongfieldM=Nμ(7.8.5)
TheinternalenergyofthissystemisThisispotentialenergyinoutsidefield.TheentropyofthissystemisDiscussion:HighTorweakfield
ThenThemicrostatenumberis(2)LowTorstrongfieldThenThemicrostatenumberis1,namelyallmagneticmomentumpointsinthedirectionofH.§7.9ThestateofNegativeTemperature
IfSdecreaseswithincreasingU,
thusTis
negative.Theexampleofaparamagneticsystemwithj=1/2(two-levelsystem,nuclearspinsystem)allowsustodiscussapossibleextensionofthenotionoftemperature.EachoftheNparticlesofthesystemshallbeabletoassumetwopossibleenergies,.Letthenumberofnuclearmagneticmomentuminthelevel+εbeN+,andthatin-εbeN-.Ofcoursewehave
N=N++N-(7.9.2)ThetotalenergyofsystemisEquations(7.9.2)and(7.9.3)canbesolvedforN+andN-,Equation(7.9.4)immediatelyallowsforthecalculationoftheentropyofthesystem.Wheretheformulalnm!=m(lnm-1)isusedforN+,N->>1.
Equation(7.9.6)yieldsforthetemperatureDiscussion:(1)AslongasE<0,wehaveT>0,asusual.(2)WhenE>0,wehaveT<0.(3)WhenE=-Nε,allmagneticmomentumspointthedirectionofB.Ω=1,S=0.
TheEandSincreasewiththeincreasingofT.WhenN+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx外牙接头项目可行性研究报告(立项说明)
- 新建高低压开关元件及设备项目立项申请报告
- 年产xx复合板机项目可行性研究报告(立项备案)
- 年产xxx筒子纱项目投资分析报告
- 年产xx楼宇自控项目可行性研究报告(项目申请)
- 肾脓肿穿刺术后护理
- 艾滋病发病状况
- 数字经济解决方案
- 大班安全教案详案:放学路上
- 中班语言诗歌教案10篇
- 大学美育智慧树知到期末考试答案章节答案2024年安徽师范大学
- 大学生心理健康教育(江汉大学)智慧树知到期末考试答案章节答案2024年江汉大学
- JTT 203-2014 公路水泥混凝土路面接缝材料
- 2024中考英语专项练习-语法填空20篇含解析
- 药品注册管理(药事管理与法规课件)
- 平衡记分法与关键绩效指标(KPI)(中国联通思茅分公司实际操作模板)
- 专业责任保险行业市场突围建议及需求分析报告
- 汽车购买意向书范本
- 新型烟草制品项目建设规划投资计划书
- 2024年中国牛奶行业概览 -头豹
- 2024年复合肥项目资金需求报告代可行性研究报告
评论
0/150
提交评论