




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市响水县2024届九年级数学第一学期期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则的长为()A. B. C. D.2.把分式中的、都扩大倍,则分式的值()A.扩大倍 B.扩大倍 C.不变 D.缩小倍3.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个4.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.35° B.50° C.125° D.90°5.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点()A.(1,0) B.(1,8) C.(1,﹣1) D.(1,﹣6)6.如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A. B. C. D.7.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°8.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=()A.20° B.25° C.30° D.35°9.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.11.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4) B.(2,6) C.(3,6) D.(3,4)12.如图,⊙O是等边△ABC的外接圆,其半径为3,图中阴影部分的面积是()A.π B. C.2π D.3π二、填空题(每题4分,共24分)13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.15.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为__________.16.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.17.若某斜面的坡度为,则该坡面的坡角为______.18.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球_____个.三、解答题(共78分)19.(8分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?20.(8分)先化简,再求值:,其中21.(8分)如图,直线y=2x-6与反比例函数的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)求△OAB的面积.22.(10分)如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?23.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?24.(10分)如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以为一边的菱形,且菱形的面积等于1.(2)在图中画一个以为对角线的正方形,并直接写出正方形的面积.25.(12分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点.①若点P在抛物线上,且,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.如图,在平面直角坐标系中,顶点为(11,﹣)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,8).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)连接AC,在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形,若存在,请直接写出点P的坐标,若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【题目详解】延长EF和BC,交于点G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE=,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,设CG=3x,DE=4x,则AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=−1,∴BC=7+4x=7+4−4=3+4,故选:D.【题目点拨】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.2、C【分析】依据分式的基本性质进行计算即可.【题目详解】解:∵a、b都扩大3倍,∴∴分式的值不变.故选:C.【题目点拨】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.3、C【解题分析】试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.4、C【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【题目详解】∵∠B=35°,∠C=90°,∴∠BAC=90°−∠B=90°−35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB1=180°−∠BAC=180°−55°=125°,∴旋转角等于125°.故选:C.【题目点拨】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.5、A【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【题目详解】∵某定弦抛物线的对称轴为直线x=2,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣2)2﹣2.将此抛物线向左平移2个单位,再向上平移3个单位,得到新抛物线的解析式为y=(x﹣2+2)2﹣2+3=x2﹣2.当x=2时,y=x2﹣2=0,∴得到的新抛物线过点(2,0).故选:A.【题目点拨】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.6、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【题目详解】将代入二次函数,得∴∴方程为∴∵∴故答案为D.【题目点拨】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.7、C【分析】根据圆周角与圆心角的关键即可解答.【题目详解】∵∠AOC=80°,∴.故选:C.【题目点拨】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、A【分析】根据旋转的性质可得AC=CD,∠CED=∠B,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CED=∠B=65°,∴△ACD是等腰直角三角形,∴∠CAD=45°,由三角形的外角性质得:.故选:A.【题目点拨】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【题目详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【题目点拨】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.10、D【解题分析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.11、C【解题分析】根据位似变换的性质计算即可.【题目详解】由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点A的坐标为(1×3,2×3),即(3,6),故选:C.【题目点拨】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.12、D【分析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【题目详解】∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π.故选D.【题目点拨】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.二、填空题(每题4分,共24分)13、3:2【解题分析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.14、【分析】根据相似多边形的性质列出比例式,计算即可.【题目详解】∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故答案为:.【题目点拨】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.15、点C在圆外【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【题目详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【题目点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16、1.【解题分析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这1个格点,故答案为1.考点:圆的有关性质.17、30°【分析】根据坡度与坡比之间的关系即可得出答案.【题目详解】∵∴坡面的坡角为故答案为:【题目点拨】本题主要考查坡度与坡角,掌握坡度与坡角之间的关系是解题的关键.18、1【解题分析】解:设红球有n个由题意得:,解得:n=1.故答案为=1.三、解答题(共78分)19、(1);(2)当t=2时,MN的最大值是4.【分析】(1)首先求出一次函数与坐标轴交点坐标,进而代入二次函数解析式得出b,c的值即可;
(2)根据作垂直x轴的直线x=t,得出M,N的坐标,进而根据坐标性质得出即可.【题目详解】解:(1)(1)∵一次函数分别交y轴、x
轴于A、B两点,
∴x=0时,y=2,y=0时,x=4,
∴A(0,2),B(4,0),将x=0,y=2代入代入y=-x2+bx+c得c=2将x=4,y=0代入代入y=-x2+bx+c,(2))∵作垂直x轴的直线x=t,在第一象限交直线AB于M,由题意易得从而得到当时,MN有最大值为:【题目点拨】在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.20、【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用特殊锐角的三角函数值、负整数指数幂与零指数幂得到a的值,继而将a的值代入计算可得.【题目详解】原式=[]•(a+1)
=•(a+1)
=,
当a=2cos30°+()-1-(π-3)0=2×+2-1=+1时,
原式=.【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及特殊锐角的三角函数值、负整数指数幂与零指数幂.21、(1)k=8,B(1,0);(2)1【分析】(1)利用待定系数法即可求出k的值,把y=0代入y=2x-6即可求出点B的坐标;(2)根据三角形的面积公式计算即可.【题目详解】解:(1)把A(4,2)代入,得2=,解得k=8,在y=2x-6中,当y=0时,2x-6=0,解得x=1,∴点B的坐标为(1,0);(2)连接OA,∵点B(1,0),∴OB=1,∵A(4,2),∴△OAB=×1×2=1.【题目点拨】本题考查了待定系数法求反比例函数解析式,一次函数与x轴的交点问题,以及三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1)3m;(1)生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(11-3x)米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(1)设围成生物园的面积为y,由题意可得:y=x(11﹣3x)且≤<4,从而求出y的最大值即可.【题目详解】设这个生物园垂直于墙的一边长为xm,(1)由题意,得x(11﹣3x)=9,解得,x1=1(不符合题意,舍去),x1=3,答:这个生物园垂直于墙的一边长为3m;(1)设围成生物园的面积为ym1.由题意,得,∵∴≤<4∴当x=1时,y最大值=11,11﹣3x=6,答:生物园垂直于墙的一边长为1m.平行于墙的一边长为6m时,围成生物园的面积最大,且为11m1.【题目点拨】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.23、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【题目详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣)2+7870∴当x=时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【题目点拨】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.24、(1)图见解析;(2)图见解析,2.【分析】(1)根据菱形面积公式可得,底边AB的高为4,结合AD=5即可得到点D的坐标,同理得到点C的坐标,连接A,C,D即可.(2)作线段EF的中线与网格交于G、H,且,依次连接E、G、F、H即可,利用正方形面积公式即可求得正方形的面积.【题目详解】解:(1)根据菱形面积公式可得,底边AB的高为4,结合AD=5即可得到点D的坐标,同理得到点C的坐标,连接A,C,D.如图所示.(2)作线段EF的中线与网格交于G、H,且,依次连接E、G、F、H即可,如图所示.正方形面积为2.【题目点拨】本题考查了网格作图的问题,掌握菱形的性质以及面积公式、正方形的性质以及面积公式、勾股定理是解题的关键.25、(1)点B的坐标为(1,0).(2)①点P的坐标为(4,21)或(-4,5).②线段QD长度的最大值为.【分析】(1)由抛物线的对称性直接得点B的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P的坐标,根据列式求解即可求得点P的坐标.②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QD⊥x轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【题目详解】解:(1)∵A、B两点关于对称轴对称,且A点的坐标为(-3,0),∴点B的坐标为(1,0).(2)①∵抛物线,对称轴为,经过点A(-3,0),∴,解得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年贵州省石阡县事业单位公开招聘辅警考试题带答案分析
- 2025年度高一历史下学期期末模拟试卷及答案(五)
- 2025年贵州省兴仁县事业单位公开招聘辅警考试题带答案分析
- 巧用策略借力家长
- 工程造价变更概述课件
- 工程课件培训
- 工程试验检测课件
- 二零二五年度杭州商铺租赁合同-含品牌合作增值条款
- 2025年度物流运输居间合同范本
- 二零二五年度集体土地租赁合同(文化创意产业)
- 软件系统售后服务方案
- JJG 1000-2005电动水平振动试验台
- GB/T 9765-2009轮胎气门嘴螺纹
- GB/T 4623-2014环形混凝土电杆
- GB/T 23806-2009精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法
- GB/T 16823.3-2010紧固件扭矩-夹紧力试验
- GB/T 13785-1992棉纤维含糖程度试验方法比色法
- 混床再生操作培训课件
- 《薄膜材料与薄膜技术》教学配套课件
- 静脉炎的预防及处理课件
- 食品安全相关知识考核试题题库与答案
评论
0/150
提交评论