2024届四川省泸州市龙马潭区金龙中学数学九上期末监测试题含解析_第1页
2024届四川省泸州市龙马潭区金龙中学数学九上期末监测试题含解析_第2页
2024届四川省泸州市龙马潭区金龙中学数学九上期末监测试题含解析_第3页
2024届四川省泸州市龙马潭区金龙中学数学九上期末监测试题含解析_第4页
2024届四川省泸州市龙马潭区金龙中学数学九上期末监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省泸州市龙马潭区金龙中学数学九上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)(

)A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里2.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数为()A.140° B.135° C.130° D.125°3.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④4.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°5.如图,在⊙O中,AB为直径,CD为弦,∠CAB=50°,则∠ADC=()A.25° B.30° C.40° D.50°6.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5% B.8% C.10% D.11%7.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A.18米

B.16米

C.20米

D.15米8.已知二次函数的图象与x轴只有一个交点,则这个交点的坐标为()A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)9.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.15cm B.20cm C.25cm D.30cm10.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由左图中所示的图案平移后得到的图案是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.12.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.13.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、….当AB=1时,l3=________,l2019=_________.14.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是________.15.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF的最小值是_____.16.函数中,自变量的取值范围是________.17.已知二次函数的部分图象如图所示,则一元二次方程的解为:_____.18.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=________.(用单位向量表示)三、解答题(共66分)19.(10分)如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.20.(6分)指出“垃圾分类工作就是新时尚”.某小区为响应垃圾分类处理,改善生态环境,将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱:“厨余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,画树状图求垃圾投放正确的概率;(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区某天三类垃圾箱中总共10吨的生活垃圾,数据统计如下(单位:吨):ABCa30.81.2b0.262.440.3c0.320.281.4该小区所在的城市每天大约产生500吨生活垃圾,根据以上信息,试估算该城市生活垃圾中的“厨余垃圾”每月(按30天)有多少吨没有按要求投放.21.(6分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.22.(8分)在平面直角坐标系xOy中,抛物线交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.23.(8分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.24.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β(1)求m的取值范围;(2)若α+β+αβ=1.求m的值.25.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.26.(10分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE=

x,AB=BE=CE=2x,由AC=AD+DE+EC=2

x+2x=30,解之即可得出答案.【题目详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

设BD=x,

在Rt△ABD中,

∴AD=DE=

x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

x+2x=30,

∴x=

=

≈5.49,

故答案选:B.【题目点拨】考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.2、C【分析】根据圆周角定理可知,再由三角形的内角和可得,最后根据圆内接四边形的性质即可得.【题目详解】AB是半圆O的直径(圆周角定理)(圆内接四边形的对角互补)故选:C.【题目点拨】本题考查了圆周角定理、三角形的内角和定理、圆内接四边形的性质,掌握灵活运用各定理和性质是解题关键.3、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【题目详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,故④正确.故选:B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.4、D【题目详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.考点:切线的性质;圆周角定理.5、C【分析】先推出∠ABC=40°,根据同弧所对的圆周角相等,可得∠ABC=∠ADC=40°,即可得出答案.【题目详解】解:∵AB为直径,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=40°,∵,∴∠ABC=∠ADC=40°,故选:C.【题目点拨】本题考查了直径所对的圆周角是90°,同弧所对的圆周角相等,推出∠ABC=90°是解题关键.6、A【分析】设平均每次下调的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,即可得出结果.【题目详解】设平均每次下调的百分率为x,依题意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A.【题目点拨】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x的方程,是解题的关键.7、A【解题分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】根据题意解:标杆的高:标杆的影长=旗杆的高:旗杆的影长,即1.5:2.5=旗杆的高:30,∴旗杆的高==18米.故选:A.【题目点拨】考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗杆的高.8、C【分析】根据△=b2-4ac=0时,抛物线与x轴有一个交点列出方程,解方程求出k,再根据二次函数的图象和性质解答.【题目详解】∵二次函数的图象与x轴只有一个交点,∴,,解得:,∴二次函数,当时,,故选C.【题目点拨】本题考查的是抛物线与x轴的交点,掌握当△=b2-4ac=0时,抛物线与x轴有一个交点是解题的关键.9、D【分析】根据底面周长=展开图的弧长可得出结果.【题目详解】解:设这个圆锥的底面半径为r,

根据题意得2πr=,

解得r=30(cm),

即这个圆锥的底面半径为30cm.

故选:D.【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10、B【解题分析】根据平移的性质:“平移不改变图形的形状和大小”来判断即可.【题目详解】解:根据“平移不改变图形的形状和大小”知:左图中所示的图案平移后得到的图案是B项,故选B.【题目点拨】本题考查了平移的性质,平移的性质是“经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移不改变图形的形状、大小和方向”.二、填空题(每小题3分,共24分)11、115°【解题分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【题目详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【题目点拨】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.12、1:1【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:1.【题目详解】解:连结AP并延长交BC于点F,∵DE△ABC的中位线,∴E是AC的中点,∴S△CPE=S△AEP,∵点P是DE的中点,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位线,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案为1:1.【题目点拨】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.13、π673π【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2019的长.【题目详解】解:根据题意得:l1=,l2=,l3=,则l2019=.故答案为:π;673π.【题目点拨】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长.14、②④【解题分析】由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-,y1)与点(,y2)到对称轴的距离可对④进行判断.【题目详解】:∵抛物线开口向下,

∴a<0,

∵抛物线的对称轴为直线x=-=1,

∴b=-2a>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以①错误;

∵b=-2a,

∴2a+b=0,所以②正确;

∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点为(3,0),

∴当x=2时,y>0,

∴4a+2b+c>0,所以③错误;

∵点(-,y1)到对称轴的距离比点(,y2)对称轴的距离远,

∴y1<y2,所以④正确.

故答案为:②④.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15、【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【题目详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,∴=,∴y=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴x=时,y有最大值,∴CF的最大值为,∴DF的最小值为5﹣=,∴AF的最小值===,故答案为.【题目点拨】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.16、【分析】根据分式有意义的条件是分母不为0;可得关系式x﹣1≠0,求解可得自变量x的取值范围.【题目详解】根据题意,有x﹣1≠0,解得:x≠1.故答案为:x≠1.【题目点拨】本题考查了分式有意义的条件.掌握分式有意义的条件是分母不等于0是解答本题的关键.17、【解题分析】依题意得二次函数y=的对称轴为x=-1,与x轴的一个交点为(-3,0),∴抛物线与x轴的另一个交点横坐标为(-1)×2-(-3)=1,∴交点坐标为(1,0)∴当x=1或x=-3时,函数值y=0,即,∴关于x的一元二次方程的解为x1=−3或x2=1.故答案为:.点睛:本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次凹函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.18、【解题分析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,故答案为:.三、解答题(共66分)19、AB=2,BC=.【解题分析】要求AB和BC,由已知∠B、∠C为特殊角,故可构造直角三角形来辅助求解.过点A作AD⊥BC于D,首先在Rt△ACD中求出CD和AD,然后在Rt△ABD中求出BD和AB,从而BC=BD+DC可求.【题目详解】解:作三角形的高AD.在Rt△ACD中,∠ACD=45°,AC=2,∴AD=CD=.在Rt△ABD中,∠B=30°,AD=,∴BD=,AB=.∴CB=BD+CD=+.故答案为AB=2,BC=.【题目点拨】本题考查解直角三角形,解答本题的关键是熟练掌握勾股定理与特殊角的三角函数值.20、(1)垃圾投放正确的概率为;(2)该城市生活垃圾中的“厨余垃圾”每月(按30天)没有按要求投放的数量为3000(吨).【分析】(1)列表得出所有等可能的情况数,找出垃圾投放正确的情况数,即可求出所求的概率.(2)用样本中投放不正确的数量除以厨余垃圾的总质量,再乘以每月的厨余垃圾的总吨数即可得.【题目详解】解:(1)列表如下:abcA(a,A)(b,A)(c,A)B(a,B)(b,B)(c,B)C(a,C)(b,C)(c,C)所有等可能的情况数有9种,其中垃圾投放正确的有(a,A);(b,B);(c,C)3种,∴垃圾投放正确的概率为=;(2)该城市生活垃圾中的“厨余垃圾”每月(按30天)没有按要求投放的数量为500×30××=3000(吨).【题目点拨】考核知识点:概率.运用列举法求概率是关键.21、(1)60°;(2)3【分析】(1)根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后利用互余可计算出∠BAD的度数;(2)利用含30度的直角三角形三边的关系求解.【题目详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.22、(1)顶点D(m,1-m);(1)向左平移了1个单位,向上平移了1个单位;(3)m=-1或m=-1.【解题分析】试题分析:把抛物线的方程配成顶点式,即可求得顶点坐标.把点代入求出抛物线方程,根据平移规律,即可求解.分两种情况进行讨论.试题解析:(1)∵,∴顶点D(m,1-m).(1)∵抛物线过点(1,-1),∴.即,∴或(舍去),∴抛物线的顶点是(1,-1).∵抛物线的顶点是(1,1),∴向左平移了1个单位,向上平移了1个单位.(3)∵顶点D在第二象限,∴.情况1,点A在轴的正半轴上,如图(1).作于点G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍).情况1,点A在轴的负半轴上,如图(1).作于点G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍),或23、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC=DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.如图∠D2AC=45°,同理易得AD2=.【题目详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=2.已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如图∠D2AC=45°,同理易得AD2=.所以AD的长为1或.【题目点拨】本题考查全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧,解题的关键是掌握全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧.24、(1)m≥﹣34;(2)m的值为2【解题分析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【题目详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1应舍去,m的值为2.【题目点拨】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣ba,x1x2=c25、(1)证明见解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得.(1)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论