四川省宜宾市翠屏区中学2024届九年级数学第一学期期末监测模拟试题含解析_第1页
四川省宜宾市翠屏区中学2024届九年级数学第一学期期末监测模拟试题含解析_第2页
四川省宜宾市翠屏区中学2024届九年级数学第一学期期末监测模拟试题含解析_第3页
四川省宜宾市翠屏区中学2024届九年级数学第一学期期末监测模拟试题含解析_第4页
四川省宜宾市翠屏区中学2024届九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省宜宾市翠屏区中学2024届九年级数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形2.下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.4.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;5.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°6.如图所示,在中,与相交于点,为的中点,连接并延长交于点,则与的面积比值为()A. B. C. D.7.若点(x1,y1),(x2,y2),(x3,y3)都在反比例函数的图象上,并且x10x2x3,则下列各式中正确的是()A.y1y2y3 B.y3y2y1 C.y2y3y1 D.y1y3y28.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④9.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)10.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣;⑤c-3a>0其中正确结论有()A.1个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.已知抛物线与轴的一个交点坐标为,则一元二次方程的根为______________.12.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.13.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.14.方程(x﹣3)(x+2)=0的根是_____.15.如图等边三角形内接于,若的半径为1,则图中阴影部分的面积等于_________.16.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.17.如图,已知∠BAD=∠CAE,∠ABC=∠ADE,AD=3,AE=2,CE=4,则BD为_____.18.若抛物线y=2x2+6x+m与x轴有两个交点,则m的取值范围是_____.三、解答题(共66分)19.(10分)某校举行秋季运动会,甲、乙两人报名参加100m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.20.(6分)如图,一次函数的图象与反比例函数()的图象相交于点和点,点在第四象限,轴,.(1)求的值;(2)求的值.21.(6分)如图,△ABC中,∠A=30°,∠B=45°,AC=4,求AB的长.22.(8分)如图,△ABC中,∠BAC=120o,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60o后到△ECD的位置.若AB=6,AC=4,求∠BAD的度数和AD的长.23.(8分)有红、黄两个盒子,红盒子中藏有三张分别标有数字,,1的卡片,黄盒子中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现甲从红盒子中取出一张卡片,乙从黄盒子中取出一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得二次函数y=ax2+bx+1的图像与x轴有两个不同的交点,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.24.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.25.(10分)已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.26.(10分)在中,,.(Ⅰ)如图Ⅰ,为边上一点(不与点重合),将线段绕点逆时针旋转得到,连接.求证:(1);(2).(Ⅱ)如图Ⅱ,为外一点,且,仍将线段绕点逆时针旋转得到,连接,.(1)的结论是否仍然成立?并请你说明理由;(2)若,,求的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【题目详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.2、B【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;

B、是轴对称图形,也是中心对称图形,故此选项正确;

C、不是轴对称图形,是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误.

故选B.【题目点拨】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、D【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【题目详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【题目点拨】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【题目详解】∵多边形从一个顶点出发可引出4条对角线,

∴,

解得:,

∴内角和;任何多边形的外角和都等于360.故选:A.【题目点拨】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.5、C【分析】根据圆周角与圆心角的关键即可解答.【题目详解】∵∠AOC=80°,∴.故选:C.【题目点拨】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、C【分析】根据平行四边形的性质得到OB=OD,利用点E是OD的中点,得到DE:BE=1:3,根据同高三角形面积比的关系得到S△ADE:S△ABE=1:3,利用平行四边形的性质得S平行四边形ABCD=2S△ABD,由此即可得到与的面积比.【题目详解】在中,OB=OD,∵为的中点,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四边形ABCD=2S△ABD,∴与的面积比为3:8,故选:C.【题目点拨】此题考查平行四边形的性质,同高三角形面积比,熟记平行四边形的性质并熟练运用解题是关键.7、D【分析】由题意先根据反比例函数的解析式判断出函数图象所在象限,再根据题意即可得出结论.【题目详解】解:∵反比例函数中k=3>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小;∵x1<0<x2<x3,∴y1<y3<y2,故选:D.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟练掌握反比例函数图象上各点的坐标是解题的关键.8、A【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到,进而得到,进一步得到.【题目详解】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正确;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO∥BG,∴△DHN∽△DGC,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④错误,故选A.【题目点拨】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.9、C【分析】把抛物线解析式化为顶点式可求得答案.【题目详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【题目点拨】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.10、D【分析】根据二次函数的图项与系数的关系即可求出答案.【题目详解】①∵图像开口向下,,∵与y轴的交点B在(0,1)与(0,3)之间,,∵对称轴为x=1,,∴b=-4a,∴b>0,∴abc<0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图像与x轴的另一个交点为(5,0),∴根据图像可以看出,当x=3时,函数值y=9a+3b+c>0,故②正确;③∵点,∴点M到对称轴的距离为,点N到对称轴的距离为,∴点M到对称轴的距离大于点N到对称轴的距离,∴,故③正确;④根据图像与x轴的交点坐标可以设函数的关系式为:y=a(x-5)(x+1),把x=0代入得y=-5a,∵图像与y轴的交点B在(0,1)与(0,3)之间,,解不等式组得,故④正确;⑤∵对称轴为x=1,∴b=-4a,当x=1时,y=a+b+c=a-4a+c=c-3a>0,故⑤正确;综上分析可知,正确的结论有5个,故D选项正确.故选D.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax1+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方.二、填空题(每小题3分,共24分)11、,【分析】将x=2,y=1代入抛物线的解析式可得到c=−8a,然后将c=−8a代入方程,最后利用因式分解法求解即可.【题目详解】解:将x=2,y=1代入得:2a+2a+c=1.解得:c=−8a.将c=−8a代入方程得:∴.∴a(x−2)(x+2)=1.∴x1=2,x2=-2.【题目点拨】本题主要考查的是抛物线与x轴的交点,求得a与c的关系是解题的关键.12、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【题目详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【题目点拨】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.13、1.【分析】根据圆周角定理进行分析可得到答案.【题目详解】解:∵∠BAC=∠BOC,∠ACB=∠AOB,∵∠BOC=2∠AOB,∴∠ACB=∠BAC=1°.故答案为1.考点:圆周角定理.14、x=3或x=﹣1.【解题分析】由乘法法则知,(x﹣3)(x+1)=0,则x-3=0或x+1=0,解这两个一元一次方程可求出x的值.【题目详解】∵(x﹣3)(x+1)=0,∴x-3=0或x+1=0,∴x=3或x=﹣1.故答案为:x=3或x=﹣1.【题目点拨】本题考查了解一元二次方程因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想.15、【分析】如图(见解析),连接OC,根据圆的内接三角形和等边三角形的性质可得,的面积等于的面积、以及的度数,从而可得阴影部分的面积等于钝角对应的扇形面积.【题目详解】如图,连接OC由圆的内接三角形得,点O为垂直平分线的交点又因是等边三角形,则其垂直平分线的交点与角平分线的交点重合,且点O到AB和AC的距离相等则故答案为:.【题目点拨】本题考查了圆的内接三角形的性质、等边三角形的性质、扇形面积公式,根据等边三角形的性质得出的面积等于的面积是解题关键.16、2【解题分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【题目详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴2,∴AF=2GF=4,∴AG=1.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=2.故答案为:2.【题目点拨】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17、1【解题分析】根据相似三角形的判定和性质定理即可得到结论.【题目详解】解:∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE,∴=,∴,∴△ABD∽△ACE,∴,∴,∴BD=1,故答案为:1.【题目点拨】本题考查了相似三角形的判定和性质定理,找对应角或对应边的比值是解题的关键.18、【分析】由抛物线与x轴有两个交点,可得出关于m的一元一次不等式,解之即可得出m的取值范围.【题目详解】∵抛物线y=2x2+6x+m与x轴有两个交点,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案为:m.【题目点拨】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac>0时,抛物线与x轴有2个交点”是解答本题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【题目详解】解:(1)(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=.【题目点拨】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.20、(1)2;(2)【分析】(1)根据点在一次函数的图象上,即可得到,进而得到k的值;(2)设交轴于点,交轴于点,得,,易证∽,进而即可得到答案.【题目详解】(1)依题意得:,∵在的图象上,∴;(2)设交轴于点,交轴于点,在中,令得,,∴E(0,-2),∵,∴,,∵,,∴∽,∴.【题目点拨】本题主要考查一次函数和反比例函数以及相似三角形的综合,掌握相似三角形的判定和性质定理,是解题的关键.21、1+1【解题分析】试题分析:本题注意考查的就是利用三角函数解直角三角形,过点C作CD⊥AB于D点,然后分别根据Rt△ADC中∠A的正弦、余弦值和Rt△CDB中∠B的正切值得出AD和BD的长度,从而得出AB的长度.试题解析:过点C作CD⊥AB于D点,在Rt△ADC中,∠A=30°,AC=4,∴CD=AC=×4=1,∴AD=,在Rt△CDB中,∠B=45°,CD=1,∴CD=DB=1,∴AB=AD+DB=1+1.22、AD=10,∠BAD=60°.【解题分析】先证明△ADE是等边三角形,再推出A,C,E共线;由于∠ADE=60°,根据旋转得出AB=CE=6,求出AE即可.【题目详解】解:由旋转可知:△ABD≌△ECD∴AB=EC=6,∠BAD=∠EAD=ED∵∠ADE=60°∴△ADE是等边三角形∴AE=AD∠E=∠DAE=60°∴∠BAD=60°∵∠BAC=120°∴∠DAC=60°=∠DAE∴C在AE上∴AD=AC+CE=4+6=10.【题目点拨】本题考查的知识点是旋转的性质,等边三角形的性质,解题的关键是熟练的掌握旋转的性质,等边三角形的性质.23、(1)见解析;(2)不公平,理由见解析【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;

(2)二次函数的图像与x轴有两个不同的交点,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【题目详解】解:(1)画树状图得:的可能结果有,、,、,、,、,、,、、及,取值结果共有9种;(2)当,时,△,此时无实数根,当,时,△,此时有两个不相等的实数根,当,时,△,此时有两个不相等的实数根,当,时,△,此时有两个相等的实数根,当,时,△,此时有两个不相等的实数根,当,时,△,此时有两个不相等的实数根,当,时,△,此时无实数根,当,时,△,此时有两个不相等的实数根,当,时,△,此时有两个相等的实数根,(甲获胜)△(乙获胜),这样的游戏规则对甲有利,不公平.【题目点拨】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24、(1)详见解析;(2)1.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论