2024届贵州省铜仁伟才学校数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
2024届贵州省铜仁伟才学校数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
2024届贵州省铜仁伟才学校数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
2024届贵州省铜仁伟才学校数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
2024届贵州省铜仁伟才学校数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省铜仁伟才学校数学九年级第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.反比例函数与在同一坐标系的图象可能为()A. B. C. D.2.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃63.下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.4.已知反比例函数y=的图象如图所示,则二次函数y=k2x2+x﹣2k的图象大致为()A. B.C. D.5.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.7.方程的两根分别为()A.=-1,=2 B.=1,=2 C.=―l,=-2 D.=1,=-28.如图,在正方形网格中,△ABC的三个顶点都在格点上,则cosB的值为()A. B. C. D.19.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:410.计算的结果是A.﹣3 B.3 C.﹣9 D.911.当x=1时,代数式2ax2+bx的值为5,当x=2时,代数式ax2+bx﹣3的值为()A.﹣ B.2 C.7 D.1712.下列关于抛物线有关性质的说法,正确的是()A.其图象的开口向下 B.其图象的对称轴为C.其最大值为 D.当时,随的增大而减小二、填空题(每题4分,共24分)13.已知实数满足,且,,则抛物线图象上的一点关于抛物线对称轴对称的点为__________.14.如图,点,分别在线段,上,若,,,,则的长为________.15.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.16.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.17.在如图所示的网格中,每个小正方形的边长都为2,若以小正形的顶点为圆心,4为半径作一个扇形围成一个圆锥,则所围成的圆锥的底面圆的半径为___________.18.如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_____.三、解答题(共78分)19.(8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.20.(8分)如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?21.(8分)为了响应国家“大众创业、万众创新”的双创政策,大学生小王与同学合伙向市政府申请了10万元的无息创业贷款,他们用这笔贷款,注册了一家网店,招收了6名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为3500元,该网店每月还需支付其它费用0.9万元.开工后的第一个月,小王他们将该电子产品的销售单价定为6元,结果当月销售了1.8万件.(1)小王他们第一个月可以偿还多少万元的无息贷款?(2)从第二个月开始,他们打算上调该电子产品的销售单价,经过市场调研他们得出:如果单价每上涨1元,月销售量将在现有基础上减少1000件,且物价局规定该电子产品的销售单价不得超过成本价的250%.小王他们计划在第二个月偿还3.4万元的无息贷款,他们应该将该电子产品的销售单价定为多少元?22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.23.(10分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.24.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?25.(12分)某地2016年为做好“精准扶贫”,投入资金1000万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1250万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于400万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?26.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.(1)证明:△ADC∽△ACB;(2)若AD=2,BD=6,求边AC的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【题目详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【题目点拨】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.2、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A.画一个三角形,其内角和是180°,是必然事件,故不符合题意;B.在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C.投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D.在一副扑克牌中抽出一张,抽出的牌是黑桃6,是随机事件,故符合题意;故选:D【题目点拨】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【解题分析】分析:根据同旁内角的定义进行分析判断即可.详解:A选项中,∠1与∠2是同位角,故此选项不符合题意;B选项中,∠1与∠2是内错角,故此选项不符合题意;C选项中,∠1与∠2是同旁内角,故此选项符合题意;D选项中,∠1与∠2不是同旁内角,故此选项不符合题意.故选C.点睛:熟知“同旁内角的定义:在两直线被第三直线所截形成的8个角中,夹在被截两直线之间,且位于截线的同侧的两个角叫做同旁内角”是解答本题的关键.4、A【分析】先根据已知图象确定反比例函数的系数k的正负,然后再依次确定二次函数的开口方向、对称轴、与y轴的交点坐标确定出合适图象即可.【题目详解】解:∵反比例函数图象位于第一三象限,∴k>0,∴k2>0,﹣2k<0,∴抛物线与y轴的交点(0,-2k)在y轴负半轴,∵k2>0,∴二次函数图象开口向上,∵对称轴为直线x=<0,∴对称轴在y轴左边,纵观各选项,只有A选项符合.故选:A.【题目点拨】本题考查了二次函数和反比例函数的图象特征,根据反比例函数图象确定k的正负、熟知二次函数的性质是解题的关键.5、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【题目详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【题目点拨】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.6、B【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【题目详解】∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选B.7、D【解题分析】(x-1)(x+1)=0,可化为:x-1=0或x+1=0,解得:x1=1,x1=-1.故选D8、B【分析】先根据勾股定理求出AB的长,再根据余弦的定义求解即可.【题目详解】∵AC=2,BC=2,∴AB=,∴cosB=.故选B.【题目点拨】本题考查了勾股定理,以及锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.9、C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【题目详解】∵S△EFC=3S△DEF,∴DF:FC=1:3(两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【题目点拨】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.10、B【分析】利用二次根式的性质进行化简即可.【题目详解】=|﹣3|=3.故选B.11、C【解题分析】直接把x=1代入进而得出2a+b=5,再把x=2代入ax2+bx﹣3,即可求出答案.【题目详解】∵当x=1时,代数式2ax2+bx的值为5,∴2a+b=5,∴当x=2时,代数式ax2+bx﹣3=4a+2b﹣3=2(2a+b)﹣3=2×5﹣3=1.故选:C.【题目点拨】本题主要考查求代数式的值,整体思想方法的应用,是解题的关键.12、D【分析】根据抛物线的表达式中系数a的正负判断开口方向和函数的最值问题,根据开口方向和对称轴判断函数增减性.【题目详解】解:∵a=2>0,∴抛物线开口向上,故A选项错误;抛物线的对称轴为直线x=3,故B选项错误;抛物线开口向上,图象有最低点,函数有最小值,没有最大值,故C选项错误;因为抛物线开口向上,所以在对称轴左侧,即x<3时,y随x的增大而减小,故D选项正确.故选:D.【题目点拨】本题考查二次函数图象和性质,掌握图象特征与系数之间的关系即数形结合思想是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【题目详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=1对称的点为:(4,4).故答案为:(4,4).【题目点拨】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.14、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【题目详解】解:,,即,解得,,,故答案为:7.1.【题目点拨】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.15、60°【解题分析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质16、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【题目详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【题目点拨】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.17、【分析】先根据直角三角形边长关系得出,再分别计算此扇形的弧长和侧面积后即可得到结论.【题目详解】解:如图,,,.,,的长度,设所围成的圆锥的底面圆的半径为,,,故答案为:.【题目点拨】本题考查了圆锥的计算及弧长的计算的知识,解题的关键是能够从图中了解到扇形的弧长和扇形的半径并利用扇形的有关计算公式进行计算,难度不大.18、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【题目详解】连接,∵半径是5,,∴,根据勾股定理,,∴,因此弦的长是1.【题目点拨】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.三、解答题(共78分)19、(1)分别为120元、200元(2)有三种购买方案,见解析【解题分析】(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得,解得.∴一套课桌凳和一套办公桌椅的价格分别为120元、200元.(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意有1600≤80000-120×20m-200×m≤24000,解得,.∵m为整数,∴m=22、23、24,有三种购买方案:

方案一

方案二

方案三

课桌凳(套)

440

460

480

办公桌椅(套)

22

23

24

(1)根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可.(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出不等式组求出即可.20、(1)1s或2s;(1)当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.【分析】(1)设P、Q同时出发,x秒钟后,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,依据△PCQ的面积为8,由此等量关系列出方程求出符合题意的值.(1)分两种情况讨论,依据相似三角形对应边成比例列方程求解即可.【题目详解】(1)设xs后,可使△PCQ的面积为8cm1.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,则(6﹣x)•1x=8,整理得x1﹣6x+8=0,解得x1=1,x1=2.所以P、Q同时出发,1s或2s后可使△PCQ的面积为8cm1.(1)设t秒后以P、C、Q为顶点的三角形与△ABC相似,则PC=6﹣t,QC=1t.当△PCQ∽△ACB时,=,即=,解得:t=.当△PCQ∽△BCA时,=,即=,解得:t=.综上所述,当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.【题目点拨】本题考查一元二次方程的应用,三角形的面积公式的求法和一元二次方程的解的情况.关键在于读懂题意,找出之间的等量关系,列出方程求解.21、(1)0.6万元;(2)2元【分析】(1)根据利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用,即可求出结论;(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,根据第二个月的利润为3.4万元,即可得出关于x的一元二次方程,即可求解.【题目详解】(1)(6﹣4)×12000﹣3500×6﹣9000=6000(元),6000元=0.6万元.答:小王他们第一个月可以偿还0.6万元的无息贷款.(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,依题意,得:(x﹣4)[12000﹣1000(x﹣6)]﹣3500×6﹣9000=34000,整理,得:x2﹣22x+160=0,解得:x1=2,x2=1.∵4×250%=10,1>10,∴x=2.答:他们应该将该电子产品的销售单价定为2元.【题目点拨】本题主要考查一元二次方程的实际应用,根据“利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用”,列出方程,是解题的关键.22、(1)证明见解析;(2)2;(3).【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【题目详解】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点∴OH是△ABC的中位线∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH与△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线∴HC=MH=∴AC=2HC=3∵tan∠ABC=,∴=∴BC=4∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I∵AC与AN都是⊙O的切线∴AC=AN,AO平分∠CAD∴AO⊥CN∵AC=3,OC=2∴由勾股定理可求得:AO=∵AC•OC=AO•CI,∴CI=∴由垂径定理可求得:CN=设OE=x,由勾股定理可得:∴,∴x=,∴CE=,由勾股定理可求得:EN=,∴由垂径定理可知:NQ=2EN=.23、(1)5;(2)∥,理由见解析;(3)【分析】(1)求出AE=,证明△ABE∽△DEA,由可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证;(3)由(2)知PQ∥A′D′,取A′D′的中点N,可得出∠PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案.【题目详解】解:(1)∵AB=2,BE=1,∠B=90°,∴AE===,∵∠AED=90°,∴∠EAD+∠ADE=90°,∵矩形ABCD中,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∴∠BAE=∠ADE,∴△ABE∽△DEA,∴,∴,∴AD=5;(2)PQ∥A′D′,理由如下:∵,∠AED=90°∴==2,∵AD=BC=5,∴EC=BC﹣BE=5﹣1=4,过点E作EF⊥AD于点F,则∠FEC=90°,∵∠A'ED'=∠AED=90°,∴∠PEF=∠CEQ,∵∠C=∠PFE=90°,∴△PEF∽△QEC,∴,∵,∴,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴=为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长==.【题目点拨】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.24、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【题目详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论