2024届湖北省黄石十四中学九年级数学第一学期期末复习检测试题含解析_第1页
2024届湖北省黄石十四中学九年级数学第一学期期末复习检测试题含解析_第2页
2024届湖北省黄石十四中学九年级数学第一学期期末复习检测试题含解析_第3页
2024届湖北省黄石十四中学九年级数学第一学期期末复习检测试题含解析_第4页
2024届湖北省黄石十四中学九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省黄石十四中学九年级数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图是二次函数图象的一部分,则关于的不等式的解集是()A. B. C. D.2.如图,向量与均为单位向量,且OA⊥OB,令=+,则=()A.1 B. C. D.23.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A. B. C. D.4.将二次函数化为的形式,结果为()A. B.C. D.5.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A. B. C. D.6.方程的两根之和是()A. B. C. D.7.已知是单位向量,且,那么下列说法错误的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣8.下列图形中为中心对称图形的是()A.等边三角形 B.平行四边形 C.抛物线 D.五角星9.已知点P(a+1,)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.10.如图,是的直径,,是的两条弦,,连接,若,则的度数是()A.10° B.20° C.30° D.40°11.已知是方程x2﹣2x+c=0的一个根,则c的值是()A.﹣3 B.3 C. D.212.抛物线经过平移得到抛物线,平移的方法是()A.向左平移1个单位,再向下平移2个单位B.向右平移1个单位,再向下平移2个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向上平移2个单位二、填空题(每题4分,共24分)13.关于x的一元二次方程的一个根为1,则方程的另一根为______.14.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为__.15.如图,、是两个等边三角形,连接、.若,,,则__________.16.已知一元二次方程有一个根为0,则a的值为_______.17.如图,在中,,为边上一点,已知,,,则____________.18.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.20.(8分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)2=x2﹣921.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.22.(10分)如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.23.(10分)如图,已知,点、坐标分别为、.(1)把绕原点顺时针旋转得,画出旋转后的;(2)在(1)的条件下,求点旋转到点经过的路径的长.24.(10分)如图,在的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系.(1)若将沿轴对折得到,则的坐标为.(2)以点为位似中心,将各边放大为原来的2倍,得到,请在这个网格中画出.(3)若小明蒙上眼睛在一定距离外,向的正方形网格内掷小石子,则刚好掷入的概率是多少?(未掷入图形内则不计次数,重掷一次)25.(12分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?26.如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】先根据抛物线平移的规律得到抛物线,通过观察图象可知,它的对称轴以及与轴的交点,利用函数图像的性质可以直接得到答案.【题目详解】解:∵根据抛物线平移的规律可知,将二次函数向左平移个单位可得抛物线,如图:∴对称轴为,与轴的交点为,∴由图像可知关于的不等式的解集为:.故选:D【题目点拨】本题考查了二次函数与不等式,主要利用了二次函数的平移规律、对称性,数形结合的思想,解题关键在于通过平移规律得到新的二次函数图象以及与轴的交点坐标.2、B【解题分析】根据向量的运算法则可得:=,故选B.3、D【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据相似三角形的判定得出△BEF∽△DCF,根据相似三角形的性质和三角形面积公式求出即可.【题目详解】解:∵四边形ABCD是平行四边形,E为AB的中点,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故选D.【题目点拨】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.4、D【分析】化,再根据完全平方公式分解因式即可.【题目详解】∵∴故选D.【题目点拨】解答本题的关键是熟练掌握完全平方公式:,注意当二次项系数为1时,常数项等于一次项系数一半的平方.5、A【解题分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【题目详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率故选A.【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.6、C【分析】利用两个根和的关系式解答即可.【题目详解】两个根的和=,故选:C.【题目点拨】此题考查一元二次方程根与系数的关系式,.7、C【题目详解】解:∵是单位向量,且,,∴,,,,故C选项错误,故选C.8、B【分析】根据中心对称图形的概念求解.【题目详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误.故选:B.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解题分析】试题分析:∵P(,)关于原点对称的点在第四象限,∴P点在第二象限,∴,,解得:,则a的取值范围在数轴上表示正确的是.故选C.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.10、D【分析】连接AD,由AB是⊙O的直径及CD⊥AB可得出弧BC=弧BD,进而可得出∠BAD=∠BAC,利用圆周角定理可得出∠BOD的度数.【题目详解】连接AD,如图所示:

∵AB是⊙O的直径,CD⊥AB,

∴弧BC=弧BD,

∴∠BAD=∠BAC=20°.

∴∠BOD=2∠BAD=40°,

故选:D.【题目点拨】此题考查了圆周角定理以及垂径定理.此题难度不大,利用圆周角定理求出∠BOD的度数是解题的关键.11、B【分析】把x=代入方程得到关于c的方程,然后解方程即可.【题目详解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故选:B.【题目点拨】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.12、D【解题分析】∵抛物线y=-3(x+1)2-2的顶点坐标为(-1,-2),平移后抛物线y=-3x2的顶点坐标为(0,0),∴平移方法为:向右平移1个单位,再向上平移2个单位.故选D.二、填空题(每题4分,共24分)13、-1【题目详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.14、1.【分析】根据题意,写出已知条件并画出图形,然后根据勾股定理即可求出AB,再根据圆周角为直角所对的弦是直径即可得出结论.【题目详解】如图,已知:AC=8,BC=6,由勾股定理得:AB==1,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是1;故答案为:1.【题目点拨】此题考查的是求三角形的外接圆的直径,掌握圆周角为直角所对的弦是直径是解决此题的关键.15、1【分析】连接AC,证明△ADC≌△BDE,则AC=BE,在Rt△ABC中,利用勾股定理可求解问题.【题目详解】连接AC,根据等边三角形的性质可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案为:1.【题目点拨】本题主要考查了全等三角形的判定和性质、等边三角形的性质、勾股定理,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.16、-1【解题分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【题目详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-1=0,可得a2+3a-1=0,解得a=-1或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-1,故答案为-1.【题目点拨】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.17、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【题目详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【题目点拨】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.18、3000(1+x)2=1【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【题目详解】解:设增长率为x,由题意得:

3000(1+x)2=1,

故答案为:3000(1+x)2=1.【题目点拨】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.三、解答题(共78分)19、(1)60°;(2)3【分析】(1)根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后利用互余可计算出∠BAD的度数;(2)利用含30度的直角三角形三边的关系求解.【题目详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.20、(1),;(2)x1=3,x2=9.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【题目详解】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,∴x=,即,.(2)∵2(x﹣3)2=x2﹣9,∴2(x﹣3)2=(x+3)(x﹣3),∴2(x﹣3)2﹣(x+3)(x﹣3)=0,∴(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,解得x1=3,x2=9.【题目点拨】本题主要考查了解一元二次方程的配方法和因式分解法,掌握解一元二次方程是解题的关键.21、(1)200、81°;(2)补图见解析;(3)【解题分析】分析:(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.详解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.点睛:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22、(1).;(2)的坐标为或.【解题分析】分析:(1)根据一次函数y=x+b的图象经过点A(-2,1),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于1.详解:(1)一次函数的图象经过点,,,.一次函数与反比例函数交于.,,,.(2)设,.当且时,以A,O,M,N为顶点的四边形为平行四边形.即:且,解得:或(负值已舍),的坐标为或.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)答案见解析;(2).【分析】(1)根据题意画出图形即可;(2)求出OA的长,再根据弧长公式即可得出结论.【题目详解】(1)如图所示,(2)由(1)图可得,,∴【题目点拨】本题考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.24、(1)(4,-1);(2)见解析;(3).【分析】(1)根据对称的特点即可得出答案;(2)根据位似的定义即可得出答案;(3)分别求出三角形和正方形的面积,再用三角形的面积除以正方形的面积即可得出答案.【题目详解】解:(1)(2)(3)∵,∴【题目点拨】本题考查的是对称和位似,比较简单,需要掌握相关的基础知识.25、(1)S=﹣x2+8x,其中0<x<8;(2)能,理由见解析;(3)当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.【解题分析】试题分析:(1)由矩形的一边长为x、周长为16得出另一边长为8﹣x,根据矩形的面积公式可得答案;(2)由设计费为24000元得出矩形面积为12平方米,据此列出方程,解之求得x的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.试题解析:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵=,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论