山东省泰安岱岳区六校联考2024届数学九年级第一学期期末调研模拟试题含解析_第1页
山东省泰安岱岳区六校联考2024届数学九年级第一学期期末调研模拟试题含解析_第2页
山东省泰安岱岳区六校联考2024届数学九年级第一学期期末调研模拟试题含解析_第3页
山东省泰安岱岳区六校联考2024届数学九年级第一学期期末调研模拟试题含解析_第4页
山东省泰安岱岳区六校联考2024届数学九年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安岱岳区六校联考2024届数学九年级第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100 B.50 C.20 D.102.如图,AB与CD相交于点E,点F在线段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,则的值为()A. B. C. D.3.在开展“爱心捐助”的活动中,某团支部8名团员捐款的数额(单位:元)分别为3,5,6,5,6,5,5,10,这组数据的中位数是()A.3元 B.5元 C.5.5元 D.6元4.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°5.如图,是的直径,点在上,,则的度数为()A. B. C. D.6.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm7.下列事件中,是必然事件的是()A.明天太阳从西边出来 B.打开电视,正在播放《新闻联播》C.兰州是甘肃的省会 D.小明跑完所用的时间为分钟8.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形 B.矩形 C.菱形 D.正方形9.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.610.如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.若,则__________.12.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)13.关于x的方程的解是,(a,m,b均为常数,),则关于x的方程的解是________.14.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.15.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.16.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.17.抛物线y=(x-1)2-7的对称轴为直线_________.18.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.三、解答题(共66分)19.(10分)在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.20.(6分)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.21.(6分)某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是.22.(8分)如图,直线y=﹣x+2与反比例函数y=的图象在第二象限内交于点A,过点A作AB⊥x轴于点B,OB=1.(1)求该反比例函数的表达式;(2)若点P是该反比例函数图象上一点,且△PAB的面积为3,求点P的坐标.23.(8分)如图,一次函数的图象与反比例函数的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.24.(8分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.25.(10分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.26.(10分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.

参考答案一、选择题(每小题3分,共30分)1、B【分析】圆锥的侧面积为半径为10的半圆的面积.【题目详解】解:圆锥的侧面积=半圆的面积=,故选B.【题目点拨】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.2、A【分析】根据平行线分线段成比例定理得可求出BC的长,从而可得CF的长,再根据平行线分线段成比例定理得,求解即可得.【题目详解】又,解得又故选:A.【题目点拨】本题考查了平行线分线段成比例定理,根据定理求出BC的长是解题关键.3、B【分析】将这组数据从小到大的顺序排列,最中间两个位置的数的平均数为中位数.【题目详解】将这组数据从小到大的顺序排列3,5,5,5,5,6,6,10,最中间两个位置的数是5和5,所以中位数为(5+5)÷2=5(元),故选:B.【题目点拨】本题考查中位数,熟练掌握中位数的求法是解答的关键.4、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【题目详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.5、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【题目详解】连接AC,

∵AB为⊙O的直径,

∴∠ACB=90°,

∵∠AED=20°,

∴∠ACD=∠AED=20°,

∴∠BCD=∠ACB+∠ACD=90°+20°=110°,

故选:B.【题目点拨】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、A【解题分析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.7、C【分析】由题意根据必然事件就是一定发生的事件,依据定义依次判断即可.【题目详解】解:A.明天太阳从西边出来,为不可能事件,此选项排除;B.打开电视,正在播放《新闻联播》,为不一定事件,此选项排除;C.兰州是甘肃的省会,为必然事件,此选项当选;D.小明跑完所用的时间为分钟,为不一定事件,此选项排除.故选:C.【题目点拨】本题考查必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【题目详解】∵在ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形,故选C.9、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【题目详解】∵关于的方程有两个相等的实数根,

∴,

解得:.故选:C.【题目点拨】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【题目详解】解:∵双曲线上有一点,设A的坐标为(a,b),∴b=∴ab=4∴的面积==2故选:B.【题目点拨】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.二、填空题(每小题3分,共24分)11、【分析】设=k,可得a=3k,b=4k,c=5k,代入所求代数式即可得答案.【题目详解】设=k,∴a=3k,b=4k,c=5k,∴=,故答案为:【题目点拨】本题考查了比例的性质,常用的比例性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质;熟练掌握比例的性质是解题关键.12、③【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【题目详解】①、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;②、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;③、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;④、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:③.【题目点拨】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.13、x1=-12,x2=1【分析】把后面一个方程中的x+3看作一个整体,相当于前面方程中的x来求解.【题目详解】解:∵关于x的方程的解是,(a,m,b均为常数,a≠0),∴方程变形为,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解为x1=-12,x2=1.故答案为x1=-12,x2=1.【题目点拨】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.14、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【题目详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【题目点拨】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.15、(﹣1,1)(1,3)【分析】根据图象可知抛物线y=﹣x2+2x+k过点(3,1),从而可以求得k的值,进而得到抛物线的解析式,然后即可得到点B和点C的坐标.【题目详解】解:由图可知,抛物线y=﹣x2+2x+k过点(3,1),则1=﹣32+2×3+k,得k=3,∴y=﹣x2+2x+3=﹣(x﹣3)(x+1),当x=1时,y=1+1+3=3;当y=1时,﹣(x﹣3)(x+1)=1,∴x=3或x=﹣1,∴点B的坐标为(﹣1,1),点C的坐标为(1,3),故答案为:(﹣1,1),(1,3).【题目点拨】本题考查了二次函数图像上点的坐标特征,二次函数与坐标轴的交点问题,二次函数与x轴的交点横坐标是ax2+bx+c=1时方程的解,纵坐标是y=1.16、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【题目详解】列表得:

-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【题目点拨】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.17、x=1【分析】根据抛物线y=a(x-h)2+k的对称轴是x=h即可确定所以抛物线y=(x-1)2-7的对称轴.【题目详解】解:∵y=(x-1)2-7

∴对称轴是x=1

故填空答案:x=1.【题目点拨】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键.18、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【题目详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【题目点拨】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(共66分)19、(1);(2)点P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,先求出点A,点B坐标,可得OA=2,OB=1,AM=1,由勾股定理可求AB长,由锐角三角函数可求解;(2)设点P(a,),用参数a表示MN的长,由面积关系可求a的值,即可求点P坐标;(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),通过证明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根与系数关系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直线y=k(x﹣4)+1过定点N(4,1),则当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,由待定系数法可求直线PN的解析式,可求k,m的值,即可求解.【题目详解】解:(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,∵直线l:y=x﹣1与x轴,y轴的交点为点A,点B,∴点A(2,0),点B(0,﹣1),且点M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴点M到直线l:y=x﹣1的距离为;(2)设点P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM⊥x轴,PN⊥y轴,∠MON=10°,∴四边形PMON是矩形,∴S△PMN=S矩形PMON=2,∴×MN×d0=2,∴×=4,∴a4﹣10a2+16=0,∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),∴点P(,2)或(2,),(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),∵∠AOB=10°,∴∠AOC+∠BOD=10°,且∠AOC+∠CAO=10°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴,∴∴ab﹣4(a+b)+17=0,∵直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B,∴a,b是方程kx+m=x2﹣4x的两根,∴a+b=k+4,ab=﹣m,∴﹣m﹣4(k+4)+17=0,∴m=1﹣4k,∴y=kx+1﹣4k=k(x﹣4)+1,∴直线y=k(x﹣4)+1过定点N(4,1),∴当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,设直线PN的解析式为y=cx+d,∴解得∴直线PN的解析式为y=x﹣1,∴k=﹣2,∴m=1﹣4×(﹣2)=1,∴直线y=kx+m的解析式为y=﹣2x+1.【题目点拨】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,根与系数关系,相似三角形的判定和性质,锐角三角函数等知识,利用参数列出方程是本题的关键.20、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=1,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【题目详解】解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值为;故答案为:;(2)如图2,在AB上截取BF=2,连接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF=,∴AP+PC的值最小值为2,故答案为:2;(3)如图3,延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=1,FC=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=1,FM=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值为.【题目点拨】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..21、(1)200;(2)36;(3)补图见解析;(4)180名.【分析】(1)根据条形图可知喜欢阅读“小说”的有80人,根据在扇形图中所占比例得出调查学生总数;(2)根据条形图可知阅读“其他”的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据喜欢阅读“科普常识”的学生所占比例,即可估计该年级喜欢阅读“科普常识”的人数.【题目详解】解:(1)80÷40%=200(人),故这次活动一共调查了200名学生.(2)20÷200×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36°.(3)200-80-40-20=60(人),即喜欢阅读“科普常识”的学生有60人,补全条形统计图如图所示:(4)60÷200×100%=30%,600×30%=180(人),故估计该年级喜欢阅读“科普常识”的人数为180.22、(1);(2)(﹣3,1)或(1,﹣3).【分析】(1)先利用一次解析式确定A点坐标为(﹣1,3),然后把A点坐标代入y=中求出k得到反比例函数解析式;(2)设P(t,﹣),利用三角形面积公式得到×3×|﹣+1|=3,然后解方程求出t,从而得到P点坐标.【题目详解】(1)∵AB⊥x轴于点B,OB=1.∴A点的横坐标为﹣1,当x=﹣1时,y=﹣x+2=3,则A(﹣1,3),把A(﹣1,3)代入y=得k=﹣1×3=﹣3,∴反比例函数解析式为;(2)设P(t,﹣),∵△PAB的面积为3,∴×3×|﹣+1|=3,解得t=﹣3或t=1,∴P点坐标为(﹣3,1)或(1,﹣3).【题目点拨】此题考查待定系数法求函数解析式,一次函数与反比例函数的图象结合求几何图形的面积.23、(1),;(1)B(﹣1,﹣1),x<﹣1或0<x<1.【分析】(1)先将点A(1,1)代入求得k的值,再将点A(1,1)代入,求得m即可.(1)当反比例函数的值大于一次例函数的值时,即一次函数的图象在反比例函数的图象下方时,x的取值范围.【题目详解】解:(1)将A(1,1)代入中,得k=1×1=1,∴反比例函数的表达式为,将A(1,1)代入中,得1+m=1,∴m=﹣1,∴一次函数的表达式为;(1)解得或所以B(﹣1,﹣1);当x<﹣1或0<x<1时,反比例函数的值大于一次函数的值.考点:反比例函数与一次函数的交点问题.24、(1)k=4,m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-.【题目详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为,∵A(4,m),∴m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论