2024届福建省福州市鼓楼区屏东中学数学九上期末联考试题含解析_第1页
2024届福建省福州市鼓楼区屏东中学数学九上期末联考试题含解析_第2页
2024届福建省福州市鼓楼区屏东中学数学九上期末联考试题含解析_第3页
2024届福建省福州市鼓楼区屏东中学数学九上期末联考试题含解析_第4页
2024届福建省福州市鼓楼区屏东中学数学九上期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州市鼓楼区屏东中学数学九上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.二次三项式配方的结果是()A. B.C. D.2.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°3.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为()A.﹣5 B.﹣1 C.﹣1.25 D.14.函数中,自变量的取值范围是()A. B. C. D.x≤1或x≠05.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2 B.3 C.4 D.56.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限7.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A. B. C. D.8.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)9.若是方程的两根,则实数的大小关系是()A. B. C. D.10.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.8二、填空题(每小题3分,共24分)11.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.12.将抛物线y=x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是__.13.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.14.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.15.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.16.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.17.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.18.如图,AD,BC相交于点O,AB∥CD.若AB=2,CD=3,则△ABO与△DCO的面积之比为_____.三、解答题(共66分)19.(10分)如图,在中,,的平分线交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交,于点,(1)试判断直线与的位置关系,并说明理由.(2)若,,求阴影部分的面积(结果保留)20.(6分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?21.(6分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.22.(8分)已知关于的一元二次方程

有实根.(1)求的取值范围;(2)求该方程的根.23.(8分)为了测量竖直旗杆的高度,某数学兴趣小组在地面上的点处竖直放了一根标杆,并在地面上放置一块平面镜,已知旗杆底端点、点、点在同一条直线上.该兴趣小组在标杆顶端点恰好通过平面镜观测到旗杆顶点,在点观测旗杆顶点的仰角为.观测点的俯角为,已知标杆的长度为米,问旗杆的高度为多少米?(结果保留根号)24.(8分)已知关于的方程:.(1)求证:不论取何实数,该方程都有两个不相等的实数根.(2)设方程的两根为,,若,求的值.25.(10分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.(1)填表:每天的销售量/台每台销售利润/元降价前8400降价后(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?26.(10分)如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.2、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【题目详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【题目点拨】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.3、A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【题目详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【题目点拨】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.4、D【解题分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【题目详解】根据题意得,且,

解得:且.

故选:D.【题目点拨】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.5、B【解题分析】设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【题目详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.【题目点拨】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.6、D【解题分析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.7、D【解题分析】试题分析:∵,∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,故,故选D.考点:二次函数图象上点的坐标特征.8、A【分析】根据顶点式解析式写出顶点坐标即可.【题目详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.9、A【分析】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图即可判断.【题目详解】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图如下:从函数图象可以看出:故选:A【题目点拨】本题考查的是二次函数与一元二次方程的关系,掌握抛物线与x轴的交点的横坐标为y=0时,一元二次方程的根是关键.10、B【分析】连接OC,根据垂径定理和勾股定理,即可得答案.【题目详解】连接OC,

∵AB是⊙O的直径,弦CD⊥AB于点E,AB=8,AE=1,∴,

∴,∴,∴,故选:B.【题目点拨】本题考查了垂径定理和勾股定理,解题关键是学会添加常用辅助线面构造直角三角形解决问题.二、填空题(每小题3分,共24分)11、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【题目详解】圆锥的侧面积=×6×10=60cm1.故答案为.【题目点拨】本题考查圆锥侧面积公式的运用,掌握公式是关键.12、y=(x+2)2-1【分析】根据左加右减,上加下减的变化规律运算即可.【题目详解】解:按照“左加右减,上加下减”的规律,向左平移2个单位,将抛物线y=x2先变为y=(x+2)2,再沿y轴方向向下平移1个单位抛物线y=(x+2)2即变为:y=(x+2)2−1,故答案为:y=(x+2)2−1.【题目点拨】本题考查了抛物线的平移,掌握平移规律是解题关键.13、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【题目详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【题目点拨】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.14、3500【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【题目详解】由10户家庭一周内使用环保方便袋的数量可知平均每户一周使用的环保方便袋的数量为则该小区500户家庭一周内需要环保方便袋约为,故答案为3500.【题目点拨】本题考查的是样本平均数的求法与意义,能够知道平均数的计算方法是解题的关键.15、8【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【题目详解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=4(米),∴(米)【题目点拨】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.16、1【解题分析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=1.【题目详解】抛物线的解析式为y=x2-6x-16,

则D(0,-16)

令y=0,解得:x=-2或8,

函数的对称轴x=-=3,即M(3,0),

则A(-2,0)、B(8,0),则AB=10,

圆的半径为AB=5,

在Rt△COM中,

OM=5,OM=3,则:CO=4,

则:CD=CO+OD=4+16=1.故答案是:1.【题目点拨】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.17、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【题目详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【题目点拨】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.18、【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,进而可得出△ABO∽△DCO,再利用相似三角形的性质可求出△ABO与△DCO的面积之比.【题目详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∴.故答案为:.【题目点拨】此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方.三、解答题(共66分)19、(1)与相切,见解析;(2)【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,进而求出圆心角的度数,再用直角三角形的面积减去扇形DOF的面积即可确定出阴影部分的面积.【题目详解】解:(1)与相切证明:连接,是的平分线,,,则,,即又过半径的外端点与相切(2)设,则,根据勾股定理得,即解得:,即中,,,扇形,阴扇形阴影部分的面积为.【题目点拨】本题考查的是圆的相关知识、勾股定理和不规则图形的面积问题,能够充分调动所学知识是解题的关键.20、(1)结果见解析;(2)不公平,理由见解析.【解题分析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.21、,-.【分析】先求出程x2+x﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【题目详解】解:∴x2+x﹣2=0,∴(x-1)(x+2)=0,∴x1=1,x2=-2,原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.【题目点拨】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.22、(1);(2)【分析】(1)根据根的判别式,列不等式求出k的取值范围即可.(2)用公式法解方程即可.【题目详解】(1)由一元二次方程有实数根,可以得出≥1,即(-2)2-4(k+1)≥1,解得:k≤1.(2),x==.【题目点拨】本题主要考查根的判别式以及公式法解一元二次方程的方法,熟记根的判别式以及一元二次方程解得公式是解题关键.23、【分析】作交于点,则,,易得,根据光的反射规律易得,可得△CDE和三角形ABE均为等腰直角三角形,设,则,,,在中有,代入求解即可.【题目详解】解:如图作交于点,则,在中,易求得由光的反射规律易得,在中,易求得设,则,,在中,,即,解得:即旗杆的高度为.【题目点拨】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及光的反射规律,本题属于中等题型24、(1)详见解析;(2).【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论