




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市高峰学校数学九年级第一学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列成语所描述的事件是必然事件的是()A.守株待兔 B.瓮中捉鳖 C.拔苗助长 D.水中捞月2.下列事件中是不可能事件的是()A.三角形内角和小于180° B.两实数之和为正C.买体育彩票中奖 D.抛一枚硬币2次都正面朝上3.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是()A.(2,0) B.(-3,0) C.(-2,0) D.(3,0)4.如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为()A.10 B.8 C.6 D.45.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣26.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值随的增大而减小C.点为图像上的任意一点,过点作轴于点.的面积是.D.若点和点在这个函数图像上,则7.遵义市脱贫攻坚工作中农村危房改造惠及百万余人,2008年以来全市累计实施农村危房改造40.37万户,其中的数据40.37万用科学记数法表示为()A. B. C. D.8.下列运算中正确的是()A.a2÷a=a B.3a2+2a2=5a4C.(ab2)3=ab5 D.(a+b)2=a2+b29.若关于x的一元二次方程有两个实数根,则k的取值范围是()A. B. C. D.10.主视图、左视图、俯视图分别为下列三个图形的物体是()A. B. C. D.11.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A. B. C. D.12.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.14.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.15.长为的梯子搭在墙上与地面成角,作业时调整为角(如图所示),则梯子的顶端沿墙面升高了______.16.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2),若点A′(5,6),则A的坐标为______.17.如图,已知AB是半圆O的直径,∠BAC=20°,D是弧AC上任意一点,则∠D的度数是_________.18.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.三、解答题(共78分)19.(8分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.20.(8分)江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率.(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.21.(8分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.22.(10分)如图1为放置在水平桌面上的台灯,底座的高为,长度均为的连杆,与始终在同一平面上.当,时,如图2,连杆端点离桌面的高度是多少?23.(10分)如图,AB为半圆O的直径,点C在半圆上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC(1)求证:AD是半圆O的切线;(2)求证:△ABC∽△DOA;(3)若BC=2,CE=,求AD的长.24.(10分)如图,直线与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式.(2)点P是第一象限抛物线上的一点,连接PA,PB,PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请求出QP+QA的最小值.25.(12分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲乙(1)写出表格中的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?26.关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根①_______方程有两个不相等的正实根②③____________(1)请将表格中①②③补充完整;(2)已知关于的方程,若方程的两根都是正数,求的取值范围.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件依次判定即可得出答案.【题目详解】解:A选项为随机事件,故不符合题意;
B选项是必然事件,故符合题意;
C选项为不可能事件,故不符合题意;
D选项为不可能事件,故不符合题意;
故选:B.【题目点拨】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.2、A【解题分析】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.3、D【分析】求出点(-1,0)关于直线的对称点,对称点的坐标即为图象与轴的另一个交点坐标.【题目详解】由题意得,另一个交点与交点(-1,0)关于直线对称设另一个交点坐标为(x,0)则有解得另一个交点坐标为(3,0)故答案为:D.【题目点拨】本题考查了二次函数的对称问题,掌握轴对称图象的性质是解题的关键.4、B【解题分析】试题分析:由OC与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,由OA与OD的长,利用勾股定理求出AD的长,由AB=2AD即可求出AB的长.∵OC⊥AB,∴D为AB的中点,即AD=BD=0.5AB,在Rt△AOD中,OA=5,OD=3,根据勾股定理得:AD=4则AB=2AD=1.故选B.考点:垂径定理点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键5、B【分析】根据题意得根的判别式,即可得出关于的一元一次不等式,解之即可得出结论.【题目详解】∵,,,由题意可知:,∴a>2,故选:B.【题目点拨】本题考查了一元二次方程(a≠0)的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.6、B【分析】对反比例函数化简得,所以k=>0,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【题目详解】解:A、∵k=>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵k=,根据反比例函数中k的几何意义可得的面积为=,故本选项正确;D、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本选项正确.故选:B.【题目点拨】题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.7、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:根据科学记数法的定义:40.37万=故选:B.【题目点拨】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.8、A【分析】根据合并同类项的法则,同底数幂的乘法与除法以,积的乘方和完全平方公式的知识求解即可求得答案.【题目详解】解:A、,故A选项正确;B、,故B选项错误;C、,故C选项错误;D、,故D选项错误.故选:A.【题目点拨】本题考查合并同类项的法则,同底数幂的乘法与除法以,积的乘方和完全平方公式等知识,熟练掌握相关运算法则是解题的关键.9、D【解题分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【题目详解】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.【题目点拨】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键10、A【解题分析】分析:本题时给出三视图,利用空间想象力得出立体图形,可以先从主视图进行排除.解析:通过给出的主视图,只有A选项符合条件.故选A.11、D【题目详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【题目点拨】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.12、B【题目详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题(每题4分,共24分)13、【解题分析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.14、【解题分析】连接AC,与对称轴交于点P,此时DE+DF最小,求解即可.【题目详解】连接AC,与对称轴交于点P,此时DE+DF最小,点D、E、F分别是BC、BP、PC的中点,在二次函数y=x2+2x﹣3中,当时,当时,或即点P是抛物线对称轴上任意一点,则PA=PB,PA+PC=AC,PB+PC=DE+DF的最小值为:故答案为【题目点拨】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.15、2-2【题目详解】由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了m.故答案为.16、(2.5,3)【分析】利用点B(3,1),B′(6,2)即可得出位似比进而得出A的坐标.【题目详解】解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17、110°【解题分析】试题解析:∵AB是半圆O的直径故答案为点睛:圆内接四边形的对角互补.18、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【题目详解】如图,连接BF,
∵EF是AB的垂直平分线,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案为:.【题目点拨】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.三、解答题(共78分)19、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【题目详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理可得,m=b-4,当b=3时,m=-1;当b=-3时,m=-7;∴m的取值范围是.综上所述,m的取值范围是或.【题目点拨】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.20、(1)这两年香草源旅游收入的年平均增长率为20﹪;(2)【分析】(1)根据题意设这两年香草源旅游收入的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果;(2)由题意根据求出的增长率,以2018年收入为初始年求出n年后该县旅游收入即可.【题目详解】解:(1)设这两年香草源旅游收入的年平均增长率为x,依题意得,解得=20﹪;(舍去).答.这两年香草源旅游收入的年平均增长率为20﹪.(2)由香草源旅游景区的收入一直保持这样的平均年增长率以及2018年收入为720万元可得,香草源旅游景区n年后的收入为:=.答:n年后的收入表达式是.【题目点拨】本题考查一元二次方程的实际应用,弄清题意并根据题意找到等量关系列方程求解是解答本题的关键.21、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,
(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【题目详解】解:(1)根据题意得:
k=-1×1=-4,
即反比例函数的解析式为,解得:
m=4,n=-1,
即点A(-1,4),点C(4,-1),
把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,
(1)把x=0代入y=-x+3得:y=3,
即点D(0,3),
点A到y轴的距离为1,点C到y轴的距离为4,
S△PAD=×PD×1=PD,
S△PCD=×PD×4=1PD,
S△PAC=S△PAD+S△PCD=PD=5,
PD=1,
∵点D(0,3),
∴点P的坐标为(0,1)或(0,5).【题目点拨】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.22、【分析】作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.判断四边形PCHG是矩形,求出DP,CH,再加上AB即可求出DF.【题目详解】解:如图,作于,于,于,于.则四边形是矩形,,,,,∴,,,.∴连杆端点D离桌面l的高度是.【题目点拨】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23、(1)见解析;(2)见解析;(3)【分析】(1)要证AD是半圆O的切线只要证明∠DAO=90°即可;(2)根据两组角对应相等的两个三角形相似即可得证;(3)先求出AC、AB、AO的长,由第(2)问的结论△ABC∽△DOA,根据相似三角形的性质:对应边成比例可得到AD的长.【题目详解】(1)证明:∵AB为直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=∠ACB=90°,∴∠AOD+∠BAC=90°,又∵∠D=∠BAC,∴∠AOD+∠D=90°,∴∠OAD=90°,∴AD⊥OA,∴AD是半圆O的切线;(2)证明:由(1)得∠ACB=∠OAD=90°,又∵∠D=∠BAC,∴△ABC∽△DOA;(3)解:∵O为AB中点,OD∥BC,∴OE是△ABC的中位线,则E为AC中点,∴AC=2CE,∵BC=2,CE=,∴AC=∴AB=,∴OA=AB=,由(2)得:△ABC∽△DOA,∴,∴,∴.【题目点拨】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.同时考查了相似三角形的判定与性质,难度适中.24、(1);(2)①点P的坐标为(,1);②【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;
(2)设出点P的坐标,①用△POA的面积是△POB面积的倍,建立方程求解即可;②利用对称性找到最小线段,用两点间距离公式求解即可.【题目详解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵抛物线经过A、B两点,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《环节动物门:枝角类Claera》课件示例
- 《商法学课件》课件
- 双语客运值班员应急管理课件
- 谭香玲项目一电力电子概述任务认识电力电子器件课件
- 铁路市场营销铁路客运市场细分的标准课件
- 《GB 18279.1-2015医疗保健产品灭菌 环氧乙烷 第1部分:医疗器械灭菌过程的开发、确认和常规控制的要求》(2025版)深度解析
- 2025年云南交通职业技术学院单招考试题库
- 标准部件四方采购协议
- 专业外墙涂料施工合同示范2025年
- 平价股权转让合同模版
- 女性生育力保存临床实践中国专家共识
- 婚纱摄影工作室拍摄协议
- 2025年儿科护理工作计划
- EMS能源管理系统V1.1-展示系统概要设计说明书 V1.00
- 2025届高考数学二轮总复习专题2三角函数与解三角形专项突破2三角函数与解三角形解答题课件
- 冶金过程优化-洞察分析
- 人教版四年级下册数学第三单元《运算律》(同步练习)
- 电力建设项目工程结算编制讲义
- 【MOOC】中国近现代史纲要-浙江大学 中国大学慕课MOOC答案
- GB/T 21477-2024船舶与海上技术非金属软管组件和非金属补偿器的耐火性能试验方法
- 设备运输包装方案
评论
0/150
提交评论