2024届安徽省桐城市第二中学数学九上期末质量检测模拟试题含解析_第1页
2024届安徽省桐城市第二中学数学九上期末质量检测模拟试题含解析_第2页
2024届安徽省桐城市第二中学数学九上期末质量检测模拟试题含解析_第3页
2024届安徽省桐城市第二中学数学九上期末质量检测模拟试题含解析_第4页
2024届安徽省桐城市第二中学数学九上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省桐城市第二中学数学九上期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图标中,是中心对称图形的是()A. B. C. D.2.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A.9 B.12 C.-14 D.103.用配方法解方程,经过配方,得到()A. B. C. D.4.下列说法中,不正确的个数是()①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点.()A.1个 B.2个 C.3个 D.4个5.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.36.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.65 B.65 C.2 D.7.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数和的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A.3 B.4 C.5 D.108.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于()A. B. C. D.9.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称10.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.二次函数的最大值是________.12.等腰△ABC的腰长与底边长分别是方程x2﹣6x+8=0的两个根,则这个△ABC的周长是_____.13.在二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x-2-101234y72-1-2m27则m的值为_____.14.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.15.已知抛物线y=x2+2kx﹣6与x轴有两个交点,且这两个交点分别在直线x=2的两侧,则k的取值范围是_____.16.长度等于6的弦所对的圆心角是90°,则该圆半径为_____.17.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.18.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)三、解答题(共66分)19.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A,B两点,点A的坐标为(﹣1,3),点B的坐标为(3,n).(1)求这两个函数的表达式;(2)点P在线段AB上,且S△APO:S△BOP=1:3,求点P的坐标.20.(6分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.21.(6分)如图,正方形ABCD的过长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD、BC交于点F、E,连接AE.(1)求证:AQ⊥DP;(2)求证:AO2=OD•OP;(3)当BP=1时,求QO的长度.22.(8分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,,且.(1)求证:;(2)若,,求的长.23.(8分)如图,已知三个顶点的坐标分别为,,(1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则.24.(8分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.(1)求的度数;(2)求证:25.(10分)如图,在正方形中,是对角线上的一个动点,连接,过点作交于点.(1)如图①,求证:;(2)如图②,连接为的中点,的延长线交边于点,当时,求和的长;(3)如图③,过点作于,当时,求的面积.26.(10分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.(1)若的半径为,,求的长;(2)求证:与相切.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】根据中心对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【解题分析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3个单位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.3、D【分析】通过配方法的步骤计算即可;【题目详解】,,,,故答案选D.【题目点拨】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键.4、C【分析】①根据弦的定义即可判断;

②根据圆的定义即可判断;

③根据垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可判断;

④确定圆的条件:不在同一直线上的三点确定一个圆即可判断;

⑤根据切线的性质:经过圆心且垂直于切线的直线必经过切点即可判断.【题目详解】解:①直径是特殊的弦.所以①正确,不符合题意;

②经过圆心可以作无数条直径.所以②不正确,符合题意;

③平分弦(不是直径)的直径垂直于弦.所以③不正确,符合题意;

④过不在同一条直线上的三点可以作一个圆.所以④不正确,符合题意;

⑤过圆心且垂直于切线的直线必过切点.所以⑤正确,不符合题意.

故选:C.【题目点拨】本题考查了切线的性质、垂径定理、确定圆的条件,解决本题的关键是掌握圆的相关定义和性质.5、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【题目详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【题目点拨】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.6、C【分析】由样本平均值的计算公式列出关于a的方程,解出a,再利用样本方差的计算公式求解即可.【题目详解】由题意知(a+0+1+2+3)÷5=1,解得a=-1,∴样本方差为故选:C.【题目点拨】本题考查样本的平均数、方差求法,属基础题,熟记样本的平均数、方差公式是解答本题的关键7、C【分析】设P(a,0),由直线AB∥y轴,则A,B两点的横坐标都为a,而A,B分别在反比例函数图象上,可得到A点坐标为(a,-),B点坐标为(a,),从而求出AB的长,然后根据三角形的面积公式计算即可.【题目详解】设P(a,0),a>0,∴A和B的横坐标都为a,OP=a,将x=a代入反比例函数y=﹣中得:y=﹣,∴A(a,﹣);将x=a代入反比例函数y=中得:y=,∴B(a,),∴AB=AP+BP=+=,则S△ABC=AB•OP=××a=1.故选C.【题目点拨】此题考查了反比例函数,以及坐标与图形性质,其中设出P的坐标,表示出AB的长是解本题的关键.8、C【分析】过O作OD⊥AB于D,根据等腰三角形三线合一得∠BOD=60°,由30°角所对的直角边等于斜边的一半求解即可.【题目详解】解:过O作OD⊥AB,垂足为D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圆心到弦的距离等于2.故选:C.【题目点拨】本题考查圆的基本性质及等腰三角形的性质,含30°角的直角三角形的性质,根据题意作出辅助线,解直角三角形是解答此题的关键.9、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【题目详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【题目点拨】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.10、B【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接写出答案.【题目详解】点P(-3,4)关于原点对称的点的坐标是(3,-4).故选:B.【题目点拨】本题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数.二、填空题(每小题3分,共24分)11、1【分析】题目所给形式是二次函数的顶点式,易知其顶点坐标是(5,1),也就是当x=5时,函数有最大值1.【题目详解】解:∵,∴此函数的顶点坐标是(5,1).即当x=5时,函数有最大值1.故答案是:1.【题目点拨】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.12、11【题目详解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰长与底边长分别是方程的两个根,∴当底边长和腰长分别为2和4时,满足三角形三边关系,此时△ABC的周长为:2+4+4=11;当底边长和腰长分别为4和2时,由于2+2=4,不满足三角形三边关系,△ABC不存在.∴△ABC的周长=11.故答案是:1113、-1【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【题目详解】解:根据图表可以得到,点(-2,7)与(4,7)是对称点,点(-1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,-1)是对称点,∴m=-1.【题目点拨】正确观察表格,能够得到函数的对称轴,联想到对称关系是解题的关键.14、【分析】本题可利用三角形面积×底×高,直接列式求解.【题目详解】∵直角三角形两直角边可作为三角形面积公式中的底和高,∴该直角三角形面积.故填:.【题目点拨】本题考查三角形面积公式以及二次根式的运算,难度较低,注意计算仔细即可.15、【分析】由抛物线y=x2+2kx﹣6可得抛物线开口方向向上,根据抛物线与x轴有两个交点且这两个交点分别在直线x=2的两侧可得:当x=2时,抛物线在x轴下方,即y<1.【题目详解】解:∵y=x2+2kx﹣6与x轴有两个交点,两个交点分别在直线x=2的两侧,∴当x=2时,y<1.∴4+4k﹣6<1解得:k<;∴k的取值范围是k<,故答案为:k<.【题目点拨】本题主要考查二次函数图象性质,解决本题的关键是要熟练掌握二次函数图象的性质.16、1【分析】结合等腰三角形的性质,根据勾股定理求解即可.【题目详解】解:如图AB=1,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:1.【题目点拨】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.17、(–3,–1)【分析】根据关于原点对称的点的规律:纵横坐标均互为相反数解答即可.【题目详解】根据关于原点对称的点的坐标的特点,可得:点P(3,1)关于原点过对称的点Q的坐标是(–3,–1).故答案为:(–3,–1).【题目点拨】本题主要考查了关于原点对称的点的坐标特点,解题时根据两个点关于原点对称时,它们的同名坐标互为相反数可直接得到答案,本题属于基础题,难度不大,注意平面直角坐标系中任意一点P(x,y),关于原点的对称点是(–x,–y),即关于原点的对称点,横纵坐标都变成相反数.18、③【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【题目详解】①、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;②、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;③、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;④、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:③.【题目点拨】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.三、解答题(共66分)19、(1)反比例函数解析式为y=﹣;一次函数解析式为y=﹣x+2;(2)P点坐标为(0,2).【分析】(1))先把点A点坐标代入y=中求出k2得到反比例函数解析式为y=-;再把B(3,n)代入y=-中求出n得到得B(3,-1),然后利用待定系数法求一次函数解析式;(2)设P(x,-x+2),利用三角形面积公式得到AP:PB=1:3,即PB=3PA,根据两点间的距离公式得到(x-3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x即可得到P点坐标.【题目详解】(1)把点A(﹣1,3)代入y=得k2=﹣1×3=﹣3,则反比例函数解析式为y=﹣;把B(3,n)代入y=﹣得3n=﹣3,解得n=﹣1,则B(3,﹣1),把A(﹣1,3),B(3,﹣1)代入y=k1x+b得,解得,∴一次函数解析式为y=﹣x+2;(2)设P(x,﹣x+2),∵S△APO:S△BOP=1:3,∴AP:PB=1:3,即PB=3PA,∴(x﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x1=0,x2=﹣3(舍去),∴P点坐标为(0,2).【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.20、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.【分析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据△ABC∽△ADB,得到=,代入计算求出AD,得到点D的坐标;(3)分△APQ∽△ABD、△AQP∽△ABD两种情况,根据相似三角形的性质列式计算即可.【题目详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴点B的坐标为(1,3);(2)如图1,作BD⊥BA交x轴于点D,则∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,则OD=AD﹣AO=,∴点D的坐标为(,0);(3)存在,由题意得,AP=2t,AQ=﹣t,当PQ⊥AB时,PQ∥BD,∴△APQ∽△ABD,∴=,即=,解得,t=,当PQ⊥AD时,∠AQP=∠ABD,∠A=∠A,∴△AQP∽△ABD,∴=,即=,解得,t=,综上所述,当t=s或s时,△APQ与△ADB相似.【题目点拨】本题考查的是相似三角形的判定和性质、坐标与图形性质,掌握相似三角形的判定定理和性质定理是解题的关键.21、(1)详见解析;(2)详见解析;(3)QO=.【分析】(1)由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP.(2)根据相似三角形的性质得到AO2=OD•OP(3根据相似三角形的性质得到BE=,求得QE=,由△QOE∽△PAD,可得,解决问题.【题目详解】(1)证明:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;(2)证明:∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP.(3)解:∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴=∴QO=.【题目点拨】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.22、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【题目详解】(1)证法一:连接.∵为的直径,∴,∴∵,∴∴∴.∵∴∵,∴∴.证法二:连接,.∵为的直径,∴∵∴∴,∴∴∵∴∵∴∴∴∵四边形内接于,∴∴∴∴.(2)解:在中,,,,根据勾股定理得.连接,∵为的直径,∴∴∴∵∴∵∴∴∴四边形是平行四边形.∴.在中,,∴解法一:过点作于点∴在中,,∴在中,∴在中,∴解法二:过点作于点∴∵∴∵∴四边形为矩形∴.∵四边形为平行四边形,∴∴.∵,∴∴即∴【题目点拨】本题考查圆的综合知识,相似三角形的判定和性质,勾股定理解直角三角形,综合性较强,有一定难度.23、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【题目详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【题目点拨】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.24、(1)30°(2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明,可得,再根据求解即可;(2)延长FE至点N,使,连接AN,通过证明,可得,再根据特殊角的锐角三角函数值,即可得证.【题目详解】(1)∵四边形ABCD为平行四边形∵M为AD的中点即即;(2)延长FE至点N,使,连接AN,由(1)知,.【题目点拨】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论