版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.全等三角形问题中常见的辅助线的作法1、添加辅助线的方法和语言表述(1)作线段:连接……;(2)作平行线:过点……作……∥……;(3)作垂线(作高):过点……作……⊥……,垂足为……;(4)作中线:取……中点……,连接……;(5)延长并截取线段:延长……使……等于……;(6)截取等长线段:在……上截取……,使……等于……;(7)作角平分线:作……平分……;作角……等于已知角……;(8)作一个角等于已知角:作角……等于……。2、全等三角形中的基本图形的构造与运用(1)倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.(2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段(3)角平分线:以角平分线为对称轴利用”轴对称性“构造全等三角形,利用的思维模式是三角形全等变换中的“对折”。可以在角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。三角形。(4)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直.1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,比较BE+CF与EF的大小.二、截长补短3、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC。4:如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.转转(一)、含半角绕顶点旋转如图,四边形ABCD是正方形,方法:延长其中一个补角的线段(延长CD到E,使ED=BM,连AE或延长CB到F,使FB=DN,连AF)结论:①MN=BM+DN②AM、AN分别平分∠BMN和∠DNM由△ABE≌△BCD导出BC=BE+ED=AB+CDED=AE-CDEC=AB-CD思路:分别将△ABM和△ADN以AM和AN为对称轴翻折,但一定要证明M、P、N三点共线.(∠B+∠D=180°且AB=AD).(二)、等腰三角形绕顶点旋转①△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC;(2)∠B0E=∠BAE=60°(“八字型”模型证明);(3)OA平分∠EOF条条件:△ABC和△CDE均为等边三角形结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三角形(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC(8)、OE=OC+OD((7),(8)需构造等边三角形证明)②②条件:△ABD和△ACE均为等腰直角三角形结论:(1)、BE=CD(2)BE⊥CD③③条件:ABEF和ACHD均为正方形结论:(1)、BD⊥CF(2)、BD=CF变形一:ABEF和ACHD均为正方形,AS⊥BC交FD于T,DF变形二:ABEF和ACHD均为正方形,M为FD的中点,求证:AN⊥BC练习巩固1、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC2、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.4、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴工学院《理论物理概论Ⅳ》2021-2022学年第一学期期末试卷
- 航空轮胎相关行业投资规划报告
- 滴眼剂行业相关投资计划提议范本
- 2024年咨询服务合同:费用结算与服务范围
- 涵闸防渗漏施工方案
- 绿色餐饮环保方案
- 2024年人工智能技术研究与应用合同
- 2024年口服降糖药项目立项申请报告模范
- 2024年城市公共服务人员聘用协议
- 2024年蒸汽清洗机项目提案报告模范
- 民法典 婚姻家庭编课件
- 电气工程及其自动化专业人才需求调研报告(新)5100字
- 火灾后建筑结构鉴定标准cecs 252
- 公务员考试行测答题卡
- 消失模工序工艺作业指导书
- 广西壮族自治区北海市各县区乡镇行政村村庄村名明细居民村民委员会
- 老年人能力评定总表(含老年人日常生活活动能力、精神状态与社会参与能力、感知觉与沟通能力、老年综合征罹患情况)
- 小学英语期中试卷分析(三篇)
- 系动词公开课 完整版PPT
- 土工击实仪不确定度评定
- 无机离子检测
评论
0/150
提交评论