




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.0BasicWavefrontAberrationTheoryForOpticalMetrology
ChangchunInstituteofOpticsandFineMechanicsandPhysicsDr.ZhangXuejun11.0BasicWavefrontAberrationThePrincipalpurposeofopticalmetrologyistodeterminetheaberrationspresentinanopticalcomponentoranopticalsystem.Tostudyopticalmetrologytheformsofaberrationsthatmightbepresentneedtobeunderstood.2ThePrincipalpurposeofopticFormostopticaltestinginstruments,thetestresultisthedifferencebetweenareference(unaberrated)wavefrontandatest(aberrated)wavefront.WeusuallycallthisdifferencetheOpticalPathDifference(OPD).OPDTestwavefrontReferencewavefrontRayNotethattheOPDisthedifferencebetweenthereferencewavefrontandthetestwavefrontmeasured
alongtheray.3Formostopticaltestinginstr1.1SignConventionTheOPDispositiveiftheaberratedwavefrontleadstheidealwavefront.Inotherword,apositiveaberrationwillfocusinfrontoftheparaxial(Gaussian)imageplane.RightHandedCoordinates:ZaxisisthelightpropagationdirectionXaxisisthemeridionalortangentialdirectionYaxisisthesagittaldirection41.1SignConventionTheOPDisThedistanceispositiveifmeasuredfromlefttoright.TheangleispositiveifitisincounterclockwisedirectionrelativetoZaxis.(+)(-)(+angle)(-angle)Sincemostopticalsystemsarerotationallysymmetric,usingpolarcoordinateismoreconvenient.XY
x=cosy=sin
5Thedistanceispositiveifme1.2AberrationFreeSystemIftheopticalsystemisunaberratedordiffraction-limited,forapointobjectatinfinitytheimagewillnotbea“point”,butanAiryDisk.ThedistributionoftheirradianceontheimageplaneofAiryDiskiscalledPointSpreadFunctionorPSF.SincePSFisverysensitivetoaberrationsitisoftenusedasanindicatoroftheopticalperformance.61.2AberrationFreeSystemIftFirstmaximumSecondmaximumDiametertothefirstzeroringiscalledthediameterofAiryDisk
:workingwavelengthF#:fnumberofthesystem7FirstmaximumSecondmaximumDiaFiniteconjugateNA:numericalApertureNA=nsinuunF#W:WorkingFnumberRuleofthumb:forvisiblelight,0.5m,DAiryF#inmicrons8FiniteconjugateunRuleofthumx,y:coordinatesmeasuredintheexitpupilx0,y0:coordinatesmeasuredinthefocalplaneI0:intensityofincidentwavefront(constant):wavelengthofincidentwavefrontf:focallengthoftheopticalsystemA:amplitudeintheexitpupil(x,y):thephasetransmissionfunctionintheexitpupilOPDPupilfunction9x,y:coordinatesmeasuredinForaberrationfreesystem,thePSFwillbethesquareoftheabsoluteoftheFouriertransformofacircularapertureanditisgivenintheformof1storderBesselfunction.10Foraberrationfreesystem,thThefractionofthetotalenergycontainedinacircleofradiusraboutthediffractionpatterncenterisgivenby:11ThefractionofthetotalenerrAngularResolution-RayleighCriterion12rAngularResolution-RayleighCGenerallyamirrorsystemwillhaveacentralobscuration.Ifeistheratioofthediameterofthecentralobscurationtothemirrordiameterd,andiftheentirecircularmirrorofdiameterdisuniformlyilluminated,thepowerperunitsolidangleisgivenby13Generallyamirrorsystemwill1414
,isinlp/mmTheCut-Offfrequencyofanopticalsystemis:15,isinlFeatures:MirrorsalignedonaxisAdvantages:SimpleandachromaticDisadvantages:CentralobscurationandlowerMTFSmallerFOVwithlongfocallength
ObscuredSystem
UnobscuredSystemFeatures:MirrorsalignedoffaxisAdvantages:NoobscurationandhigherMTF;LargerFOVwithlongfocallengthAchromaticDisadvantages:Difficulttomanufactureandassembly16Features:ObscuredSystem1.3SphericalWavefront,DefocusandLateralShiftAperfectlenswillproduceinitsexitpupilasphericalwavefrontconvergingtoapointadistanceRfromtheexitpupil.Thesphericalwavefrontequationis:Sagequation171.3SphericalWavefront,DefocDefocusOriginalwavefront:Newwavefront:DefocustermIncreasingtheOPDmovesthefocustowardtheexitpupilinthenegativeZdirection.Inotherword,iftheimageplaneisshiftedalongtheopticalaxistowardthelensanamount
z(zisnegative),achangeinthewavefrontrelativetotheoriginalsphericalwavefrontis:18DefocusOriginalwavefront:NewunDepthofFocusRuleofthumb:forvisiblelight,0.5m,Z(F#)2inmicronsByuseofRayleighCriterion:ThesmallertheF#,orthelargertherelativeaperture,thesmallertheDepthofFocus,sotheharderthealignment.19unDepthofFocusRuleofthumb:2020Lateral(Transverse)ShiftInsteadofshiftingthecenterofcurvaturealongZaxis,wemoveitalongXaxis,then:Forthesamereason,ifmovealongYaxis,then:21Lateral(Transverse)ShiftInstAgeneralsphericalwavefront:Thisequationrepresentsasphericalwavefrontwhosecenterofcurvatureislocatedatthepoint(
X,
Y,Z).TheOPDis:Thisthreetermsareadditiveforthemisalignment,someorallofthemshouldberemovedfromthetestresultfordifferenttestconfigurations.22Ageneralsphericalwavefront:1.4TransverseandLongitudinalAberrationIngeneral,thewavefrontintheexitpupilisnotaperfectspherebutanaberratedsphere,sodifferentpartsofthewavefrontcometothefocusindifferentplaces.Itisoftendesirabletoknowwherethesefocuspointsarelocated,i.e.,find(
x,y,z)asafunctionof(x,y).231.4TransverseandLongitudinaWavefrontaberrationisthedepartureofactualwavefrontfromreferencewavefrontalongtheRAY.24Wavefrontaberrationisthede1.5SeidelAberrationsInarealopticalsystem,theformofthewavefrontaberrationscanbeextremlycomplexduetotherandomerrorsindesign,fabricationandalignment.AccordingtoWelford,thiswavefrontaberrationcanbeexpressedasapowerseriesof(h,x,y):a3termgivesrisetothephaseshiftoverthatisconstantacrosstheexitpupil.Itdoesn'tchangetheshapeofthewavefrontandhasnoeffectontheimage,usuallycalledPiston.b1tob5termshavefourthdegreeforh,x,ywhenexpressedaswavefrontaberrationorthirddegreeastransverseaberration,usuallycalledfourth-orderorthirdorderaberrations.h:fieldcoordinatesx,y:coordinatesatexitpupil251.5SeidelAberrationsInarea2626Iflooktheopticalsystemfromtherearend,weseeexitpupilplaneandimageplane.27IflooktheopticalsystemfroWavefrontAberrationExpansion28WavefrontAberrationExpansionClassicalSeidelAberrations29ClassicalSeidelAberrations29W000W020W040W060W111W131W151W222W242Whatdoaberrationslooklike?30W000W020W040W060W111W131W151W2W000W020W040W060W111W131W151W222W242W33331W000W020W040W060W111W131W151W2FieldCurvatureWheredoaberrationscomefrom?32FieldCurvatureWheredoaberraDistortion33Distortion33AstigmatismW22234AstigmatismW222343535ComaW13136ComaW13136WarrenSmith,ModernOpticalEngineering,P65SphericalAberration
W=W040
437WarrenSmith,ModernOpticalE+
W=W040
4
W=W020
2
W=-1W020
2+W040
4SphericalAberration+Defocus38+W=W0404W=W0202W=-1W020Through-focusDiffractionImage(WithSphericalAberration)39Through-focusDiffractionImagWavefrontmeasurementusinganinterferometeronlyprovidesdataatasinglefieldpoint(oftenonaxis).Thiscausesfieldcurvaturetolooklikefocusanddistortiontolookliketilt.Therefore,anumberoffieldpointsmustbemeasuredtodeterminetheSeidelaberration.Whenperformingthetestonaxis,comashouldnotbepresent.Ifcomaispresentonaxis,itmightresultfromtiltor/anddecenteredopticalcomponentsinthesystemduetomisalignment.Acommonerrorinmanufacturingopticalsurfacesisforasurfacetobeslightlycylindricalinsteadofperfectlyspherical.Astigmatismmightbeseenonaxisduetomanufacturingerrorsorimpropersupportingstructure.Importanttoknow40WavefrontmeasurementusinganCaustic41Caustic41SpecifiesthesizeofaberrationBasicformofaberrationTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.1.6AberrationCoefficients42Specifiesthesizeofaberrati4343TheLagrangeInvariantж
TheLagrangeInvariantholdsatanyplanebetweenobjectandimage.ж=Atobjectplane:ж=Atimageplane:ж=Forobjectatinfinity:44TheLagrangeInvariantжTheLaParaxialRayTracingSnell’sLaw45ParaxialRayTracingSnell’sLaL=SeidelCoefficientTable46L=SeidelCoefficientTable46SeidelCoefficientCalculationforaSinglelet47SeidelCoefficientCalculationCalculationbyZemax48CalculationbyZemax48CalculationbySeidelCoefficientFormula49CalculationbySeidelCoeffici5050TheThinLensFormTheaberrationsofagivenopticalsystemdependonthesystemparameterssuchasaperturediameter,focallength,andfieldangle,aswellassomespecificconfigurationsofthesystem.Thesystemparameterscanbefactoredoutoftheaberrationcoefficients,leavingremainingfactorswhichdependonlyupontheconfigurationofthesystem.Theseremainingfactorswewillcallthestructuralaberrationcoefficients.51TheThinLensFormTheaberrati5252TheStructureAberrationCoefficientRolandV.Shack53TheStructureAberrationCoeffTheThinLensBendingItispossibletohaveasetoflenseswiththesamepowerandthesamethicknessbutwithdifferentshapes.X:MinimumsphericalaberrationIfYisconstant,thenIfobjectatinfinity,Y=1,n=1.5,then54TheThinLensBendingItisposMinimumcomaIfobjectatinfinity,Y=1,n=1.5,thenX=-2X=-1X=+1X=+2Forobjectatinfinity,stopatthinlens,whenlenspowerisfixed:55MinimumcomaIfobjectatinfinZemaxResultCalculationUsingThinLensForm56ZemaxResultCalculationUsingForobjectatinfinity:ж=Forthinlensisinair,n=1,rearrangethethinlensformula:57Forobjectatinfinity:ж=Fort1.7ZernikePolynomialsOfteninopticaltesting,tobetterinterpretthetestresultsitisconvenienttoexpresswavefrontdatainpolynomialform.Zernikepolynomialsareoftenusedforthispurposesincetheycontaintermshavingthesameformsastheobservedaberrations(Zernike,1934).NearlyallcommercialdigitalinterferometersandopticaldesignsoftwaresuseZernikepolynomialstorepresentthewavefrontaberrations.581.7ZernikePolynomialsOftenZernikepolynomialshavesomeinterestingproperties,IfisZernikepolynomialtermsofnthdegreeandwediscusswithinaunitcircle:Thesepolynomialsareorthogonaloverthecontinuousinterioroftheunitcircle:
59Zernikepolynomialshavesomecanbeexpressedastheproductoftwofunctions.Onedependsonlyontheradialcoordinate
andtheotherdependsonlyontheangularcoordinate
.nandlareeitherbothevenorbothodd.Ithasrotationalsymmetryproperty.Rotatingthecoordinatesystembyanangledoesn'tchangetheformofthepolynomials:
60canbeexpressedasthepro
canbeexpressedas:,wheremn,l=n-2m.SoZerniketermUnmcanbeexpressedas:Where:sinfunctionisusedforn-2m>0
cosfunctionisusedforn-2m
061canbeexpressedas:,whereSothewavefrontaberrationcanbeexpressedasalinearcombinationofZernikecircularpolynomialsofkthdegree:WhereAnmisthecoefficientofZerniketermUnm.62Sothewavefrontaberrationca4thZernikepolynomials634thZernikepolynomials63Re-orderedZernikepolynomials(first36terms)64Re-orderedZernikepolynomials12354678PlotsofZernikepolynomials#1~#86512354678PlotsofZernikepolyn9101112131415PlotsofZernikepolynomials#9~#15669101112131415PlotsofZernikePlotsofZernikepolynomials#16~#2416171819202122232467PlotsofZernikepolynomials#33PlotsofZernikepolynomials#25~#36252628272930323135346833PlotsofZernikepolynomialsZernikepolynomialsareeasilyrelatedtoclassicalaberrations.W(,
)isusuallyfoundthebestleastsquaresfittothedatapoints.SinceZernikepolynomialsareorthogonalovertheunitcircle,anyoftheterms:alsorepresentsindividuallyabestleastsquaresfittothedata.Anmisindependentofeachother,sotoremovedefocusortiltweonlyneedtosettheappropriatecoefficientstozerowithoutneedingtofindanewleastsquaresfit.AdvantagesofusingZernikepolynomials69ZernikepolynomialsareeasilyCautionsofusingZernikepolynomialsMidorhighfrequencyerrorsmightbe“smoothedout”.ForexampletheDiamondTurnedsurfaceprofilecannotbeaccuratelyexpressedbyusingreasonablenumberofZerniketerms.Zernikepolynomialsareorthogonalonlyoverthecontinuousinteriorofanunitcircle,generallynotorthogonaloverthediscretesetofdatapointswithinaunitcircleoranyotherapertureshape.70CautionsofusingZernikepolyRelationshipBetweenZernikepolynomialsandSeidelAberrationsThefirst9Zernikepolynomialsareexpressedas:ThesameaberrationcanbeexpressedinSeidelform:71RelationshipBetweenZernikepUsingtheidentity:72Usingtheidentity:7273731.8PeaktoValleyandRMSWavefrontAberrationPeaktoValley(PV)issimplythemaximumdepartureoftheactualwavefrontfromthedesiredwavefrontinbothpositiveandnegativedirections.WhileusingPVtospecifythe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中药材种苗质量合同标准及发展趋势
- 16.1《阿房宫赋》课件 2024-2025学年统编版高一语文必修下册
- 七年级语文上册 第二单元 体验亲情 6 散步教学设计 新人教版
- Brand KPIs for pet supply online shop PetShop.co.uk in the United Kingdom-外文版培训课件(2025.2)
- 第三章陆地和海洋第一节大洲和大洋教学设计-2024-2025学年人教版地理七年级上册
- 2025年度全国中小学语文教师基本功技能大赛模拟试题及答案
- 癫痫患者的护理
- 发热患者的护理
- 个人劳动防护用品的使用和维护安全培训
- 版个人房屋退租合同协议书范本
- 室速的观察及护理
- 餐饮公司绩效考核办法
- 2025年03月春季河北邯郸市丛台区博硕人才引进50人笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年新高考历史模拟试卷2(含答案解析)
- 急诊一科一品一特色护理
- 物流行业招聘流程及人员配置
- 液化气充装站建站可行性研究报告
- 电力安全工作规程(完整版)
- 《广东省智慧高速公路建设指南(试行)》
- 《分布式生活垃圾中转站臭气处理技术规程》
- 一般企业财务报表附注(模板)
评论
0/150
提交评论