2024届江苏省扬州市广陵区树人学校数学九年级第一学期期末达标检测模拟试题含解析_第1页
2024届江苏省扬州市广陵区树人学校数学九年级第一学期期末达标检测模拟试题含解析_第2页
2024届江苏省扬州市广陵区树人学校数学九年级第一学期期末达标检测模拟试题含解析_第3页
2024届江苏省扬州市广陵区树人学校数学九年级第一学期期末达标检测模拟试题含解析_第4页
2024届江苏省扬州市广陵区树人学校数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省扬州市广陵区树人学校数学九年级第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.2.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.3.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是()A.8或6 B.10或8 C.10 D.84.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978×103 B.97.8×104 C.9.78×105 D.0.978×1065.如图,直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A.x>﹣6或0<x<2 B.﹣6<x<0或x>2 C.x<﹣6或0<x<2 D.﹣6<x<26.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个7.方程的两根分别为()A.=-1,=2 B.=1,=2 C.=―l,=-2 D.=1,=-28.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-3,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-4,0)9.二次函数y=(x﹣4)2+2图象的顶点坐标是()A.(﹣4,2) B.(4,﹣2) C.(4,2) D.(﹣4,﹣2)10.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或011.若反比例函数的图象过点A(5,3),则下面各点也在该反比例函数图象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)12.反比例函数与正比例函数在同一坐标系中的大致图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.经过点的反比例函数的解析式为__________.14.已知=,则的值是_______.15.如图,在Rt△ABC中,∠ABC=90°,AB=1,BC=,将△ABC绕点顶C顺时针旋转60°,得到△MNC,连接BM,则BM的长是_____.16.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.17.△ABC中,∠C=90°,AC=6,BC=8,则sin∠A的值为__________.18.如图,边长为2的正方形,以为直径作,与相切于点,与交于点,则的面积为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,抛物线y=﹣x1+1x+a交x轴于点A,B,交y轴于点C,点A的横坐标为﹣1.(1)求抛物线的对称轴和函数表达式.(1)连结BC线段,BC上有一点D,过点D作x轴的平行线交抛物线于点E,F,若EF=6,求点D的坐标.20.(8分)如图,某中学准备在校园里利用院墙的一段再用米长的篱笆围三面,形成一个矩形花园(院墙长米).(1)设米,则___________米;(2)若矩形花园的面积为平方米,求篱笆的长.21.(8分)有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上.点是抛物线上任意一点,且.若恒成立,求m的最小值.22.(10分)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.23.(10分)如图,已知正方形,点在延长线上,点在延长线上,连接、、交于点,若,求证:.24.(10分)如图,在△ABC中,利用尺规作图,画出△ABC的内切圆.25.(12分)如图,在中,,为边上的中线,于点E.(1)求证:;(2)若,,求线段的长.26.平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【题目详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【题目点拨】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.2、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【题目详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【题目点拨】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.3、B【分析】分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.【题目详解】解:由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=因此这个三角形的外接圆半径为1.综上所述:这个三角形的外接圆半径等于8或1.故选:B.【题目点拨】本题考查的是三角形的外接圆与外心,掌握直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆是解题的关键.4、C【题目详解】解:978000用科学记数法表示为:9.78×105,故选C.【题目点拨】本题考查科学记数法—表示较大的数.5、C【解题分析】分析:根据函数图象的上下关系,结合交点的横坐标找出不等式y1<y1的解集,由此即可得出结论.详解:观察函数图象,发现:

当x<-6或0<x<1时,直线y1=x+1的图象在双曲线y1=的图象的下方,

∴当y1<y1时,x的取值范围是x<-6或0<x<1.

故选C.点睛:考查了反比例函数与一次函数的交点问题,解题的关键是依据函数图象的上下关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据函数图象位置的上下关系结合交点的坐标,找出不等式的解集是关键.6、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【题目详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【题目点拨】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.7、D【解题分析】(x-1)(x+1)=0,可化为:x-1=0或x+1=0,解得:x1=1,x1=-1.故选D8、A【解题分析】此题根据切线的性质以及勾股定理,把要求PQ的最小值转化为求AP的最小值,再根据垂线段最短的性质进行分析求解.【题目详解】连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,则根据垂线段最短,则作AP⊥x轴于P,即为所求作的点P;此时P点的坐标是(-3,0).故选A.【题目点拨】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.9、C【分析】利用二次函数顶点式可直接得到抛物线的顶点坐标.【题目详解】解:∵y=(x﹣4)2+2,∴顶点坐标为(4,2),故答案为C.【题目点拨】本题考查了二次函数的顶点式,掌握顶点式各参数的含义是解答本题的关键.10、B【解题分析】设方程的两根为x1,x2,

根据题意得x1+x2=1,

所以a2-2a=1,解得a=1或a=2,

当a=2时,方程化为x2+1=1,△=-4<1,故a=2舍去,

所以a的值为1.

故选B.11、D【解题分析】先利用待定系数法求出反比例函数的解析式,然后将各选项的点代入验证即可.【题目详解】将点代入得:,解得则反比例函数为:A、令,代入得,此项不符题意B、令,代入得,此项不符题意C、令,代入得,此项不符题意D、令,代入得,此项符合题意故选:D.【题目点拨】本题考查了待定系数法求函数解析式、以及确定某点是否在函数上,依据题意求出反比例函数解析式是解题关键.12、A【分析】分a>0和a<0两种情况,根据反比例函数与正比例函数的图象的性质判断即可.【题目详解】解:当a>0时,反比例函数图象在一、三象限,正比例函数图象经过一、二、三象限;当a<0,反比例函数图象在二、四象限,正比例函数图象经过二、三、四象限.故选:A.【题目点拨】本题考查的知识点是反比例函数与正比例函数图象的性质,熟记性质内容是解此题的关键.二、填空题(每题4分,共24分)13、【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k值,即可得解.【题目详解】设反比例函数解析式为,则,解得:,∴此函数的解析式为.故答案为:.【题目点拨】本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单.14、【分析】根据合比性质:,可得答案.【题目详解】由合比性质,得,

故答案为:.【题目点拨】此题考查比例的性质,利用合比性质是解题关键.15、【分析】由旋转的性质得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,从而∠BCM=90°,然后根据勾股定理求解即可.【题目详解】解:由旋转的性质得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案为:.【题目点拨】本题考查了图形的变换-旋转,锐角三角函数,以及勾股定理等知识,准确把握旋转的性质是解题的关键.16、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值.【题目详解】解:由图象可得:甲的速度为8÷2=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160÷100=1.6米/秒,经过a秒,乙追上甲,可列方程,∴,故答案为:1.【题目点拨】本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键.17、【分析】根据勾股定理及三角函数的定义直接求解即可;【题目详解】如图,,∴sin∠A,故答案为:【题目点拨】本题考查了三角函数的定义及勾股定理,熟练掌握三角函数的定义是解题的关键.18、【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【题目详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=,则DF=∴的面积为=故答案为.【题目点拨】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题(共78分)19、(1)y=﹣x1+1x+6;对称轴为x=1;(1)点D的坐标为(1.5,3.5).【分析】(1)将点A的坐标代入函数的解析式求得a的值后即可确定二次的解析式,代入对称轴公式即可求得对称轴;(1)首先根据点A的坐标和对称轴求得点B的坐标,然后求得直线BC的解析式,从而设出点D的坐标并表示出点EF的坐标,表示出EF的长后根据EF=6求解即可.【题目详解】解:如图:(1)∵A点的横坐标为﹣1,∴A(﹣1,0),∵点A在抛物线y=﹣x1+1x+a上,∴﹣1﹣4+a=0,解得:a=6,∴函数的解析式为:y=﹣x1+1x+6,∴对称轴为x=﹣=﹣=1;(1)∵A(﹣1,0),对称轴为x=1,∴点B的坐标为(6,0),∴直线BC的解析式为y=﹣x+6,∵点D在BC上,∴设点D的坐标为(m,﹣m+6),∴点E和点F的纵坐标为﹣m+6,∴y=﹣x1+1x+6=﹣m+6,解得:x=1±,∴EF=1+﹣(1﹣)=1,∵EF=6,∴1=6,解得:m=1.5,∴点D的坐标为(1.5,3.5).【题目点拨】考查了待定系数法确定二次函数的解析式及抛物线与坐标轴的交点问题,解题的关键是正确的求得函数的解析式,难度不大.20、(1);(2)15米【分析】(1)根据题意知道的长度=篱笆总长-列出式子即可;(2)根据(1)中的代数式列出方程,解方程即可.【题目详解】解:(1),(2)根据题意得方程:,解得:,,当时,(不合题意,舍去),当时,(符合题意).答:花园面积为米时,篱笆长为米.【题目点拨】本题主要考察列代数式、一元二次方程的应用,注意篱笆只围三面有一面是墙.21、(1)见解析;(2)或;(3)【分析】(1)由BD平分∠ABC推出∠ABD=∠CBD,又AB∥BC,所以∠ADB=∠CBD,所以∠ABD=∠ADB,即AB=AD,所以四边形ABCD为“和睦四边形”;(2)分别求出AQ、AP、BQ、OP、OB的值,连接PQ,因为,所以,所以,根据勾股定理求出PQ,再分类讨论t的值即可;(3)表示出点的坐标,由可得,因为得出所以,即,由①②的方程,且解出a、b的值,求出抛物线的解析式为,因为P在抛物线上,将P代入抛物线得,,可得当,又因为,所以,即,得出m的最小值为;【题目详解】解:(1),,,,,四边形ABCD为“和睦四边形”;(2)由题意得:AQ=5t,AP=4t,BQ=10-5t,OP=8-4t,OB=6,连接PQ,,,综上:;(3)由题意得:,由①②,且,得,,【题目点拨】本题是二次函数的综合性题目,给了新型定义,解题的关键是审清题目的意思.22、(1)m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m,理由见解析.【解题分析】试题分析:(1)由于x的方程mx2+(m+2)x+=1有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于m的不等式,解不等式即可求解;(2)不存在符合条件的实数m.设方程mx2+(m+2)x+=1的两根分别为x1、x2,由根与系数关系有:x1+x2=-,x1•x2=,又+=,然后把前面的等式代入其中即可求m,然后利用(1)即可判定结果.试题解析:(1)由,得m>﹣1,又∵m≠1∴m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m.设方程两根为x1,x2则,解得m=﹣2,此时△<1.∴原方程无解,故不存在.23、见解析.【分析】根据已知条件证明△ADG≌△CDF,得到∠ADG=∠CDF,根据AD∥BC,推出∠CDF=∠E,由此证明△CDE∽△CFD,即可得到答案.【题目详解】∵四边形ABCD是正方形,∴∠A=∠BCD=90,AD=CD,∴∠DCF=∠A=90,又∵,∴△ADG≌△CDF,∴∠ADG=∠CDF,∵AD∥BC,∴∠ADG=∠E,∴∠CDF=∠E,∵∠BCD=∠DCF=90,∴△CDE∽△CFD,∴,∴.【题目点拨】此题考查正方形的性质,三角形全等的判定及性质,三角形相似的判定及性质,在证明题中证明线段成比例的关系通常证明三角形相似,由此得到边的对应比的关系,注意解题方法的积累.24、见解析【分析】分别作出三角形两个内角的角平分线,交点即为三角形的内心,也就是三角形内切圆的圆心,进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论