2024届河南省三门峡市名校数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2024届河南省三门峡市名校数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2024届河南省三门峡市名校数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2024届河南省三门峡市名校数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2024届河南省三门峡市名校数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省三门峡市名校数学九年级第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有()A.最大值 B.最小值 C.最大值= D.最小值=2.若,则的值是()A. B. C. D.03.抛物线y=2x2﹣3的顶点坐标是()A.(0,﹣3) B.(﹣3,0) C.(﹣,0) D.(0,﹣)4.过反比例函数图象上一点作两坐标轴的垂线段,则它们与两坐标轴围成的四边形面积为()A.-6 B.-3 C.3 D.65.如图,已知a∥b∥c,直线AC,DF与a、b、c相交,且AB=6,BC=4,DF=8,则DE=(

)A.12 B. C. D.36.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm7.把分式中的、都扩大倍,则分式的值()A.扩大倍 B.扩大倍 C.不变 D.缩小倍8.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于()A. B. C. D.9.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<210.下列是一元二次方程有()①;②;③;④.A. B. C. D.11.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形12.下列各式计算正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为____________________________.14.如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.15.如图,在中若,,则__________,__________.16.已知一次函数y=ax+b与反比例函数y=的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为____________.17.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.18.若关于的一元二次方程有两个相等的实数根,则的值是__________.三、解答题(共78分)19.(8分)如图,是的直径,切于点,交于点,平分,连接.(1)求证:;(2)若,,求的半径.20.(8分)二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)若方程有两个不相等的实数根,求的取值范围;(3)若抛物线与直线相交于,两点,写出抛物线在直线下方时的取值范围.21.(8分)装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).两种装潢材料的成本如下表:材料甲乙价格(元/米2)5040设矩形的较短边AH的长为x米,装潢材料的总费用为y元.(1)MQ的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.22.(10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)23.(10分)如图1.正方形的边长为,点在上,且.如图2.将线段绕点逆时针旋转,设旋转角为,并以为边作正方形,连接试问随着线段的旋转,与有怎样的数量关系?说明理由;如图3,在的条件下,若点恰好落在线段上,求点走过的路径长(保留).24.(10分)如图,点D在以AB为直径的⊙O上,AD平分,,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:.25.(12分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积.26.为了估计鱼塘中的鱼数,养鱼老汉首先从鱼塘中打捞条鱼,并在每一条鱼身上做好记号,然后把这些鱼放归鱼塘,过一段时间,让鱼儿充分游动,再从鱼塘中打捞条鱼,如果在这条鱼中有条是有记号的,那么养鱼老汉就能估计鱼塘中鱼的条数.请写出鱼塘中鱼的条数,并说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】解:由当时有最大值,得时,,,反比例函数解析式为,当时,图象位于第四象限,随的增大而增大,当时,最小值为故选D.2、D【分析】设,则a=2k,b=3k,代入式子化简即可.【题目详解】解:设,∴a=2k,b=3k,∴==0,故选D.【题目点拨】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.3、A【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐标,本题得以解决.【题目详解】∵抛物线y=2x2﹣3的对称轴是y轴,∴该抛物线的顶点坐标为(0,﹣3),故选:A.【题目点拨】本题考查了抛物线的顶点坐标,找到抛物线的对称轴是解题的关键.4、D【分析】根据反比例函数的几何意义可知,矩形的面积为即为比例系数k的绝对值,即可得出答案.【题目详解】设B点坐标为(x,y),由函数解析式可知,xy=k=-6,则可知S矩形ABCO=|xy|=|k|=6,故选:D.【题目点拨】本题考查了反比例函数系数k的几何意义,关键是理解图中矩形的面积为即为比例系数k的绝对值.5、C【解题分析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故选C.【题目点拨】本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例.6、C【解题分析】根据相似三角形三边对应成比例进行求解即可得.【题目详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【题目点拨】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.7、C【分析】依据分式的基本性质进行计算即可.【题目详解】解:∵a、b都扩大3倍,∴∴分式的值不变.故选:C.【题目点拨】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.8、C【分析】过O作OD⊥AB于D,根据等腰三角形三线合一得∠BOD=60°,由30°角所对的直角边等于斜边的一半求解即可.【题目详解】解:过O作OD⊥AB,垂足为D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圆心到弦的距离等于2.故选:C.【题目点拨】本题考查圆的基本性质及等腰三角形的性质,含30°角的直角三角形的性质,根据题意作出辅助线,解直角三角形是解答此题的关键.9、C【解题分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【题目详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【题目点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.10、A【解题分析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【题目详解】解:①符合一元二次方程的定义,故正确;②方程二次项系数可能为0,故错误;③整理后不含二次项,故错误;④不是整式,故错误,故选:A.【题目点拨】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.11、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【题目详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【题目点拨】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.12、D【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【题目详解】A.与不能合并,所以A选项错误;B.原式=,所以B选项错误;C.原式=6×3=18,所以C选项错误;D.原式所以D选正确.故选D.【题目点拨】考查二次根式的运算,熟练掌握二次根式加减乘除的运算法则是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接EB,构造直角三角形,设AE为,则,利用勾股定理得到有关的一元一次方程,即可求出ED的长.【题目详解】连接EB,

∵EF垂直平分BD,

∴ED=EB,

设,则,

在Rt△AEB中,

即:,

解得:.∴,

故答案为:.【题目点拨】本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键.14、【分析】根据反比例函数关系式与面积的关系得S△COE=S△BOD=3,由C是OA的中点得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面积比是相似比的平方得,求出△ABC的面积,从而求出△AOD的面积,得出结论.【题目详解】过C作CE⊥OB于E,∵点C、D在双曲线(x>0)上,∴S△COE=S△BOD,∵S△OBD=3,∴S△COE=3,∵CE∥AB,∴△COE∽△AOB,∴,∵C是OA的中点,∴OA=2OC,∴,∴S△AOB=4×3=12,∴S△AOD=S△AOB−S△BOD=12−3=9,∵C是OA的中点,∴S△ACD=S△COD,∴S△COD=,故答案为.【题目点拨】本题考查了反比例函数系数k的几何意义,即在反比例函数的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,所成的三角形的面积是定值|k|,且保持不变.15、40°100°【分析】根据等边对等角可得,根据三角形的内角和定理可得的度数.【题目详解】解:∵,∴,∴,故答案为:40°,100°.【题目点拨】本题考查等边对等角及三角形的内角和定理,掌握等腰三角形的性质是解题的关键.16、y=x-1【题目详解】解:把(4,1)代入,得k=8,∴反比例函数的表达式为,把(-1,m)代入,得m=-4,∴B点的坐标为(-1,-4),把(4,1),(-1,-4)分别代入y=ax+b,得解得,∴直线的表达式为y=x-1.故答案为:y=x-1.17、【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【题目详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案为:【题目点拨】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.18、1【分析】因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【题目详解】根据题意可得:解得:m=1故答案为:1【题目点拨】本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)连接OC,则,由角平分线的性质和,得到,即可得到结论成立;(2)由AB是直径,得到∠AEB=90°,则四边形DEFC是矩形,由三角形中位线定理,得到BE=2CD=8,由勾股定理,即可求出答案.【题目详解】(1)证明:连接,交于,由是切线得;又∵,∴,∵,∴,∴,∴,即.(2)解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,∵,∴四边形是矩形,∴,∴,∴;∴的半径为.【题目点拨】本题考查了圆的切线的性质,矩形的判定和性质,角平分线性质,三角形的中位线定理,以及勾股定理,解题的关键是掌握所学知识进行求解,正确得到AB的长度.20、(1),;(2);(3)或【分析】(1)根据图象可知x=1和3是方程的两根;(2)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围;(3)根据题意作图,由图象即可得到抛物线在直线下方时的取值范围.【题目详解】(1)∵函数图象与轴的两个交点坐标为(1,0)(3,0),∴方程的两个根为,;(2)∵二次函数的顶点坐标为(2,2),∴若方程有两个不相等的实数根,则的取值范围为.(3)∵抛物线与直线相交于,两点,由图象可知,抛物线在直线下方时的取值范围为:或.【题目点拨】本题主要考查了二次函数与不等式以及抛物线与x轴的交点的知识,解答本题的关键是熟练掌握二次函数的性质以及图象的特点,此题难度不大.21、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析【分析】(1)根据大正方形的边长减去两个小长方形的宽即可求解;

(1)根据总费用等于两种材料的费用之和即可求解;

(3)利用二次函数的性质和最值解答即可.【题目详解】解:(1)∵AH=GQ=x,AD=6,

∴MQ=6-1x;

故答案为:6-1x;(1)根据题意,得AH=x,AE=6﹣x,S甲=4S长方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y关于x的函数解析式为y=﹣40x1+140x+2.(3)预备资金4元购买材料一定够用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知抛物线开口向下,在对称轴的左侧,y随x的增大而增大.由x-3=0可知,抛物线的对称轴为直线x=3.∴当x<3时,y随x的增大而增大.∵中心区的边长不小于1米,即6﹣1x≥1,解得x≤1,又x>0,∴0<x≤1.当x=1时,y=﹣40(x-3)1+1800=﹣40(1-3)1+1800=4,∴当0<x≤1时,y≤4.∴预备资金4元购买材料一定够用.答:预备资金4元购买材料一定够用.【题目点拨】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.22、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【题目详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°,由(1)知∠BPQ=30°,∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°,∴AC=PC,即3x=10+x,解得:x=,∴PQ=2x=≈15.8(m),答:树PQ的高度约为15.8m.【题目点拨】本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题的关键.23、(1);(2)【分析】(1)利用已知条件得出,从而可得出结论(2)连接,交于连接,可得出CG=AG,接着可证明是等边三角形.,再找出,最后利用弧长公式求解即可.【题目详解】解:.理由如下:由题意,可知.又,..如图,连接,交于连接.四边形是正方形,与互相垂直平分.点在线段上,垂直平分..由题意,知,.又正方形的边长为,.,即是等边三角形...则点走过的路径长就是以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论