山东日照明望台中学2024届九年级数学第一学期期末教学质量检测试题含解析_第1页
山东日照明望台中学2024届九年级数学第一学期期末教学质量检测试题含解析_第2页
山东日照明望台中学2024届九年级数学第一学期期末教学质量检测试题含解析_第3页
山东日照明望台中学2024届九年级数学第一学期期末教学质量检测试题含解析_第4页
山东日照明望台中学2024届九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东日照明望台中学2024届九年级数学第一学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“”或,如,,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“”数的槪率为()A. B. C. D.2.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2 B.π﹣ C.π﹣2 D.π﹣3.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.4.已知点在同一个函数的图象上,这个函数可能是()A. B. C. D.5.如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为()A.12 B.16 C.24 D.326.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°7.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40° B.50° C.55° D.60°8.如图,在▱ABCD中,AB:BC=4:3,AE平分∠DAB交CD于点E,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.4:3 D.16:99.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次10.已知两个相似三角形的面积比为4:9,则周长的比为()A.2:3 B.4:9C.3:2 D.11.反比例函数y=kx(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n等于A.﹣8 B.﹣4 C.﹣18 D.﹣12.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.则从点摆动到点经过的路径长为________.14.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.15.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x,可列方程________.16.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.17.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_______千米.18.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.三、解答题(共78分)19.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.20.(8分)如图①,是平行四边形的边上的一点,且,交于点.(1)若,求的长;(2)如图②,若延长和交于点,,能否求出的长?若能,求出的长;若不能,说明理由.21.(8分)如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.22.(10分)如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点.(1)求证:;(2)求证:;(3)若的长为12cm,当点在线段上移动时,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由.23.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24.(10分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.25.(12分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.26.如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.

参考答案一、选择题(每题4分,共48分)1、C【分析】首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.【题目详解】解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,即324,423,

故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为,

故选:C.【题目点拨】本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.2、C【解题分析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD=,AC=2CD=2,∵sin∠COD=,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=B×AC=×2×2=2,S扇形AOC=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=,故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=,有一定的难度.3、B【解题分析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【题目点拨】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.4、D【解题分析】由点的坐标特点,可知函数图象关于轴对称,于是排除选项;再根据的特点和二次函数的性质,可知抛物线的开口向下,即,故选项正确.【题目详解】点与点关于轴对称;由于的图象关于原点对称,因此选项错误;由可知,在对称轴的右侧,随的增大而减小,对于二次函数只有时,在对称轴的右侧,随的增大而减小,选项正确故选.【题目点拨】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.5、B【分析】根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可.【题目详解】解:∵H、G是AD与CD的中点,

∴HG是△ACD的中位线,

∴HG=AC=4cm,

同理EF=4cm,根据矩形的对角线相等,连接BD,得到:EH=FG=4cm,

∴四边形EFGH的周长为16cm.

故选:B.【题目点拨】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质.6、C【题目详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.7、A【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【题目详解】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°﹣∠COB=40°.故选:A.【题目点拨】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.8、B【分析】根据相似三角形的面积比等于相似比的平方即可解决问题.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵AB:BC=4:3,∴DE:AB=3:4,∵△DEF∽△BAF,∵DE:EC=3:1,∴DE:DC=DE:AB=3:4,∴.故选:B.【题目点拨】本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、C【解题分析】试题解析:A.“购买1张彩票就中奖”是不可能事件,错误;B.“概率为0.0001的事件”是不可能事件,错误;C.“任意画一个三角形,它的内角和等于180°”是必然事件,正确;D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.10、A【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【题目详解】∵两个相似三角形的面积之比为4:9,

∴两个相似三角形的相似比为2:1,

∴这两个相似三角形的周长之比为2:1.故选A【题目点拨】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.11、D【解题分析】利用反比例函数图象上点的坐标特征得到4n=1×(-4),然后解关于n的方程即可.【题目详解】∵点(1,-4)和点(4,n)在反比例函数y=kx∴4n=1×(-4),∴n=-1.故选D.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k12、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【题目详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【题目点拨】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,由题意可得∠AOP=60°,∠BOQ=30°,进而得∠AOB=90°,设OA=OB=x,分别在Rt△AOP和Rt△BOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可.【题目详解】解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,设OA=OB=x,则在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:.【题目点拨】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键.14、【分析】根据相似多边形的性质列出比例式,计算即可.【题目详解】∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故答案为:.【题目点拨】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.15、25(1-x)²=16【解题分析】试题分析:对于增长率和降低率问题的一般公式为:增长前数量×=增长后的数量,降低前数量×=降低后的数量,故本题的答案为:16、1:1【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:1.【题目详解】解:连结AP并延长交BC于点F,∵DE△ABC的中位线,∴E是AC的中点,∴S△CPE=S△AEP,∵点P是DE的中点,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位线,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案为1:1.【题目点拨】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.17、1【解题分析】根据比例尺=图上距离:实际距离.根据比例尺关系即可直接得出实际的距离.【题目详解】根据比例尺=图上距离:实际距离,得:A,B两地的实际距离为2.6×1000000=100000(cm)=1(千米).故答案为1.【题目点拨】本题考查了线段的比.能够根据比例尺正确进行计算,注意单位的转换.18、310【分析】利用配方法将函数解析式转化为顶点式,利用二次函数的性质,可求得铅球行进的最大高度;铅球推出后落地时,高度y=0,把实际问题可理解为当y=0时,求得x的值就是铅球落地时的水平距离.【题目详解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.【题目点拨】此题考查了函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解.正确解答本题的关键是掌握二次函数的性质.三、解答题(共78分)19、(1)①菱形,理由见解析;②AF=1;(2)秒.【分析】(1)①先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;②根据勾股定理即可求AF的长;(2)分情况讨论可知,P点在BF上;Q点在ED上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【题目详解】(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=1,∴AF=1.(2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=1t,QA=12﹣4t,∴1t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.【题目点拨】本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.20、(1);(2)能,【分析】(1)由DE∥BC,可得,由此即可解决问题;

(2)由PB∥DC,可得,可得PA的长.【题目详解】(1)∵为平行四边形∴,,又∵∴又∵∴,∴.(2)能∵为平行四边形,∴,,∴∴∴【题目点拨】本题考查了相似三角形的判定与性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1)见解析;(2);(3)【分析】(1)连接OC,由OB=OC,利用等边对等角得到∠BCO=∠B,由∠ACD=∠B,得到∠ACD+∠OCA=90°,即可得到EF为圆O的切线;(2)证明Rt△ABC∽Rt△ACD,可求出AC=2,由勾股定理求出BC的长即可;(3)求出∠B=30°,可得∠AOC=60°,在Rt△ACD中,求出CD,然后用梯形ADCO和扇形OAC的面积相减即可得出答案.【题目详解】(1)证明:连接OC,∵AB是⊙O直径,∴∠ACB=90°,即∠BCO+∠OCA=90°,∵OB=OC,∴∠BCO=∠B,∵∠ACD=∠B,∴∠ACD+∠OCA=90°,∵OC是⊙O的半径,∴EF是⊙O的切线;(2)解:在Rt△ABC和Rt△ACD中,∵∠ACD=∠B,∠ACB=∠ADC,∴Rt△ABC∽Rt△ACD,∴,∴AC2=AD•AB=1×4=4,∴AC=2,∴;(3)解:∵在Rt△ABC中,AC=2,AB=4,∴∠B=30°,∴∠AOC=60°,在Rt△ADC中,∠ACD=∠B=30°,AD=1,∴CD===,∴S阴影=S梯形ADCO﹣S扇形OAC=.【题目点拨】本题是圆的综合题,考查了切线的判定,圆周角定理,相似三角形的判定与性质,勾股定理以及扇形面积的计算,熟练掌握圆的基本性质是解本题的关键.22、(1)见解析;(2)见解析;(1)存在,请确定C点的位置见解析,MN=1.【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN是等边三角形,即可得出结论;(1)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【题目详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,

∴∠ACE=∠BCD,

在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,

在△ACM与△DCN中,,∴△ACM≌△DCN,

∴CM=CN,

又∵∠MCN=180°-60°-60°=60°,

∴△MCN是等边三角形,

∴∠MNC=∠NCB=60°

即MN∥AB;(1)解:假设符合条件的点C存在,设AC=x,MN=y,

∵MN∥AB,∴,即,,当x=6时,ymax=1cm,即点C在点A右侧6cm处,且MN=1.【题目点拨】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.23、10,1.【解题分析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.24、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;

(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【题目详解】(1)∵AB=AC,AO⊥BC,

∴∠OAC=∠OAB=45°,

∴∠EAB=∠EAF-∠BAF=45°,

∴∠EAB=∠BAF=45°,

在△EAB和△FAB中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论