北师大版九年级数学上册 (菱形的性质与判定)特殊平行四边形课件教学(第1课时)_第1页
北师大版九年级数学上册 (菱形的性质与判定)特殊平行四边形课件教学(第1课时)_第2页
北师大版九年级数学上册 (菱形的性质与判定)特殊平行四边形课件教学(第1课时)_第3页
北师大版九年级数学上册 (菱形的性质与判定)特殊平行四边形课件教学(第1课时)_第4页
北师大版九年级数学上册 (菱形的性质与判定)特殊平行四边形课件教学(第1课时)_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章特殊平行四边形1.1

菱形的性质与判定九年级数学教学课件(北师版)第1课时

目录1新课目标新课进行时32情景导学知识小结4CONTENTS随堂演练5课后作业6新课目标1新课目标1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)情景导学2情景导学欣赏下面图片,图片中框出的图形是你熟悉的吗?情景导学欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.点击图片播放新课进行时3新课进行时核心知识点一菱形的性质思考如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?

平行四边形菱形邻边相等新课进行时定义:有一组邻边相等的平行四边形.菱形是特殊的平行四边形.平行四边形不一定是菱形.归纳总结新课进行时活动1如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?观看下面视频:点击图片播放新课进行时活动2在自己剪出的菱形上画出两条折痕,折叠手中

的图形(如图),并回答以下问题:问题1菱形是轴对称图形吗?如果是,指出它的对称轴.是,两条对角线所在直线都是它的对称轴.问题2根据上面折叠过程,猜想菱形的四边在数量上有什么关系?菱形的两对角线有什么关系?猜想1菱形的四条边都相等.

猜想2菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.

新课进行时已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O.

求证:(1)AB=BC=CD=AD;

(2)AC⊥BD;

∠DAC=∠BAC,∠DCA=∠BCA,

∠ADB=∠CDB,∠ABD=∠CBD.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD

=BC(平行四边形的对边相等).又∵AB=AD,∴AB

=

BC

=

CD

=AD.ABCOD证一证新课进行时(2)∵AB=AD,

∴△ABD是等腰三角形.又∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,

∴AO⊥BD,AO平分∠BAD,即AC⊥BD,∠DAC=∠BAC.

同理可证∠DCA=∠BCA,

∠ADB=∠CDB,∠ABD=∠CBD.ABCOD新课进行时

菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.

角:对角相等.边:对边平行且相等.对角线:相互平分.菱形的特殊性质平行四边形的性质归纳总结新课进行时例1如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BO=BD.∵AC=6cm,BD=12cm,∴AO=3cm,BO=6cm.在Rt△ABO中,由勾股定理得∴菱形的周长=4AB=4×3=12(cm).典例精析新课进行时例2如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.证明:连接AC.∵四边形ABCD是菱形,∴AC平分∠BAD,即∠BAC=∠DAC.∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°.又∵AC=AC,∴△ACE≌△ACF.∴AE=AF.

菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.归纳新课进行时例3如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.ABCDOE证明:∵四边形ABCD为菱形,∴AD∥BC,AD=BA,

∠ABC=∠ADC=2∠ADB

,∴∠DAE=∠AEB,∵AB=AE,∴∠ABC=∠AEB,

∴∠ABC=∠DAE,

∵∠DAE=2∠BAE,∴∠BAE=∠ADB.

又∵AD=BA

,∴△AOD≌△BEA

,∴AO=BE.新课进行时1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是

(

)A.10B.12C.15D.20C练一练2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_______.第1题图第2题图6cm知识小结4知识小结菱形的性质菱形的性质有关计算边周长=边长的四倍角对角线1.两组对边平行且相等;2.四条边相等两组对角分别相等,邻角互补邻角互补1.两条对角线互相垂直平分;2.每一条对角线平分一组对角随堂演练5随堂演练1.菱形具有而一般平行四边形不具有的性质是()

A.对角相等B.对边相等C.对角线互相垂直D.对角线相等C2.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于()A.18B.16C.15D.14B随堂演练3.根据下图填一填:(1)已知菱形ABCD的周长是12cm,那么它的边长是______.(2)在菱形ABCD中,∠ABC=120°,则∠BAC=_______.(3)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的边长是_______.3cm30°ABCOD5cm随堂演练(4)菱形的一个内角为120°,平分这个内角的对角线长为11cm,菱形的周长为______.44cmABCOD随堂演练4.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.

证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△DCE(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠EDC.∴∠AFD=∠CBE.ADCBFE课后作业61、完成教材本课时的习题2、预习下节课内容文本文本文本单击此处添加文本文本课后作业谢谢欣赏THANKYOUFORLISTENING第一章特殊平行四边形1.1

菱形的性质与判定九年级数学教学课件(北师版)第2课时

目录1新课目标新课进行时32情景导学知识小结4CONTENTS随堂演练5课后作业6新课目标1新课目标1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.(重点、难点)2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.情景导学2情景导学1.平行四边形的对边

,对角

,对角线

.2.菱形具有

的一切性质.3.菱形是

图形也是

图形.4.菱形的四条边都

.5.菱形的两条对角线互相

.平行且相等相等互相平分平行四边形轴对称中心对称相等垂直且平分6.平行四边形的面积=_________.ABCDF底×高7.菱形是特殊的平行四边形,如图菱形ABCD的面积=_________.BC·DF思考:你能用菱形的对角线表示菱形的面积吗?ABCOD情景导学新课进行时3新课进行时核心知识点一菱形的面积问题1

菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形ABCD的面积吗?ABCD思考

前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢?能.过点A作AE⊥BC于点E,则S菱形ABCD=底×高

=BC·AE.E新课进行时问题2

如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.ABCDO解:∵四边形ABCD是菱形,∴AC⊥BD,∴S菱形ABCD=S△ABC

+S△ADC=AC·BO+AC·DO=AC(BO+DO)=AC·BD.你有什么发现?菱形的面积=

底×高=

对角线乘积的一半例1:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,∴∠AED=90°,(2)菱形ABCD的面积∴AC=2AE=2×12=24(cm).DBCAE新课进行时归纳:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.新课进行时例2如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(结果分别精确到0.01m和0.1m2

).A

B

C

D

O

解:∵花坛ABCD是菱形,新课进行时【变式题】

如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°.∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=×∠ABC=30°,△ABC是等边三角形.∵菱形ABCD的周长是8cm.∴AB=2cm,新课进行时∴OA=AB=1cm,AC=AB=2cm,

∴BD=2OB=cm;(2)S菱形ABCD=AC•BD

=×2×=(cm2).归纳:菱形中的相关计算通常转化为直角三角形或等腰三角形,当菱形中有一个角是60°时,菱形被分为以60°为顶角的两个等边三角形.新课进行时练一练如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cmB.4.8cmC.5cmD.9.6cmB新课进行时如图两张不等宽的纸条交叉重叠在一起,重叠的部分是什么图形?做一做平行四边形新课进行时核心知识点二菱形的判定与性质的综合问题如图两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是什么图形?为什么?菱形新课进行时ACDB分析:易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可.由题意可知BC边上的高和CD边上的高相等,然后通过证△ABE≌△ADF,即得AB=AD.EF新课进行时例3如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;新课进行时(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为,∴菱形的面积为.(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.归纳:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.新课进行时练一练如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.解:∵四边形ABCD为平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠ACB,∠BAC=∠ACD,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠DAC=∠ACD,∴AD=DC,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.新课进行时知识小结4知识小结菱形的性质与判定的综合性问题菱形的面积综合运用面积=底×高=两条对角线乘积的一半随堂演练5随堂演练1.已知菱形的周长是24cm,那么它的边长是______.2.如图,菱形ABCD中∠BAC=120°,则∠BAC=_______.6cm60°3.如图,菱形的两条对角线长分别为10cm和24cm,则菱形的边长是()CA.10cmB.24cmC.13cmD.17cmAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论