纳米复合材料ohvgv8411_第1页
纳米复合材料ohvgv8411_第2页
纳米复合材料ohvgv8411_第3页
纳米复合材料ohvgv8411_第4页
纳米复合材料ohvgv8411_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纳米技术(nanotechndogy),也称毫微技术,是研究结构尺寸在0.1纳米至loo纳米范围内材料的性质和应用的一种技术。1981年扫描隧道显微镜发明后,诞生了一门以0.1至到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。利用纳米技术将氙原子排成IBM纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,像铁钻合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。分散相是以独立的相态分布在整个连续相中,两相之间存在着相界面。分散相可以是纤维状、颗粒状或是弥散的填料。复合材料中各个组分虽然保持其相对独立性,但复合材料的性质却不是各个组分性能的简单加和,而是在保持各个组分材料的某些特点基础上,具有组分间协同作用所产生的综合性能。由于复合材料各组分间''取长补短〃,充分弥补了单一材料的缺点,产生了单一材料所不具备的新性能,开创了材料设计方面的新局面。合而成的复合材料。这些固相可以是非晶质、半晶质、晶质或者兼而有之,而且可以是无机物、有机物或二者兼有。纳米复合材料也可以是指分散相尺寸有一维小于100nm的复合材料,分散相的组成可以是无机化合物,也可以是有机化合物,无机化合物通常是指陶瓷、金属等,有机化合物通常是指有机高分子材料。当纳米材料为分散相,有机聚合物为连续相时,就是聚合物基纳米复合材料 。纳米复合材料与常规的无机填料/聚合物体系不同,不是有机相与无机相的简单混合,而是两相在纳米尺寸范围内复合而成。由于分散相与连续相之间界面面积非常大,界面间具有很强的相互作用,产生理想的粘接性能,使界面模糊。作为分散相的有机聚合物通常是指刚性棒状高分子,包括溶致液晶聚合物、热致液晶聚合物和其它刚直高分子,它们以分子水平分散在柔性聚合物基体中,构成无机物/有机聚合物纳米复合材料。作为连续相的有机聚合物可以是热塑性聚合物、热固性聚合物。聚合物基无机纳米复合材料不仅具有纳米材料的表面效应、量子尺寸效应等性质,而且将无机物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、加工性及介电性能糅合在一起,从而产生许多特异的性能。纳米复合材料 是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性剂为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,如今发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材料,具有许多特别优秀的性能。我们在碳纳米管取得的研究成果主要包括:1) 大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。2) 开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。3) 开发了制造具有软基底定向碳纳米管膜的技术。钨铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨一铜复合粉体,目前正在加紧其产业化应用研究。摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。1、溶胶-凝胶法溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类:(1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。(3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。2、层间插入法层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范围1〜100nm内。层状矿物原料来源极其丰富,而且价廉。插入法大致可分为以下几种:(1)熔融插层聚合先将聚合物单体分散并插入到层状硅酸盐片层中,然后进行原位聚合。利用原位聚合时所放出的大量热量,克服硅酸盐片层间的库仑力而使其发生剥离,从而使硅酸盐片层与聚合物基体以纳米尺度复合。(2)溶液插层聚合将聚合物单体和层状无机物分别溶解(分散)到某一溶剂中,充分分散后,混合到一起,搅拌一定时间,使单体进入无机物层间,然后在合适的条件下使聚合物单体聚合。(3)聚合物熔融插层先将层状无机物与聚合物混合,再将混合物加热到熔融状态,在静态或有剪切力的作用下,使聚合物插入层状无机物的层间。该方法不需要溶剂,可直接加工,易于工业化生产,且适用面较广。(4)聚合物溶液插层将聚合物大分子和层状无机物一起加入到某一溶剂中,搅拌使聚合物分散在溶剂中,并插入到无机物片层间。溶液法的关键是寻找合适的单体和相容的聚合物黏土共溶剂体系。由于大量的溶剂不易回收,因此溶液法对环境不利。3、共混法3.共混法类似于聚合物的共混改性,是聚合物与无机纳米粒子的共混,该法是制备纳米复合材料最简单的方法,适合于各种形态的纳米粒子。根据共混方式,共混法大致可分为以下四种。(1)溶液共混将基体树脂溶于良溶剂中,加入纳米粒子,充分搅拌使之均匀分散,成膜或浇铸到模具中,除去溶剂制得样品。(2)乳液共混聚合物乳液与纳米粒子均匀混合,最后除去溶剂而成型。乳液共混中有外乳化型与自乳化型两种复合体系。外乳化法由于乳化剂的存在,一方面可使纳米粒子更加稳定,分散更加均匀,另一方面它也会影响纳米复合材料的一些物化性能,特别是对电性能影响较大。自乳化型复合体系既能使纳米粒子更加稳定,分散更加均匀,又能克服外加乳化剂对纳米复合材料的电学及光学性能的影,比外乳化型复合体系更可取。(3)熔融共混将聚合物熔体与纳米粒子共混制成复合体系,其中所选聚合物的分解温度应高于其熔点。熔融共混法较其它方法耗能少,且球状粒子在加热时碰撞机会增加,更易团聚,因而表面改性更为重要。(4)机械共混通过各种机械方法如搅拌、研磨等来制备纳米复合材料。该法容易控制粒子的形态和尺寸分布,其难点在于粒子的分散。为防止无机纳米粒子的团聚,共混前要对纳米粒子进行表面处理除采用分散剂、偶联剂和(或)表面功能改性剂等综合处理外,还可用超声波辅助分散。4、原位聚合法原位聚合法是将无机纳米粒子与单体均匀混合后在一定温度条件下由引发剂作用引发(或不加)的直接聚合,是制备具有良好分散效果的纳米复合材料的重要方法。该法可一次聚合成型,适用于各类单体及聚合方法,并保持纳米复合材料良好的性能。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数有机-无机纳米复合材料的制备。由于聚合物单体分子小,粘度低,表面有效改性后无机纳米粒子容易均匀分散,保证了体系的均匀性和各项物理性能。原位聚合法反应条件温和,制备的复合材料中纳米粒子均匀分布粒子的纳米特性完好无损,同时在聚合中,只经一次聚合成型,不需热加工,避免了由此产生降解,从而保持了基本性能的稳定。但其使用有较大的局限性,以为该方法仅适用于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料LB技术在适当的条件下,不溶物单分子层可以通过特定的方法转移到固体基底上,并且基本保持其定向排列的分子层结构。这种技术是20世纪二三十年代由美国科学家LLangmuir及其学生K.Blodgett建立的一种单分子膜制备技术,它是将兼具亲水头和疏水尾的两亲性分子分散在水面上,经逐渐压缩其水面上的占有面积,使其排列成单分子层,再将其转移沉积到固体基底上所得到的一种膜。根据此技术首创者的姓名,将此技术称为LB膜技术。习惯上将漂浮在水面上的单分子层膜叫做Langmuir膜,而将转移沉积到基底上的膜叫做Langmuir-Blodgett膜,简称为LB膜。LB膜的优点膜厚为分子级水平(纳米数量级),具有特殊的物理化学性质;可以制备单分子膜,也可以逐层累积形成多层LB膜,组装方式任意选择;可以人为选择不同的高分子材料,累积不同的分子层,使之具有多种功能:成膜可在常温常压下进行,所需能量小,基本不破坏成膜材料的高分子结构;LB膜技术在控制膜层厚度及均匀性方面远比常规制膜技术优越;可有效地利用LB膜分子自身的组织能力,形成新的化合物;LB膜结构容易测定,易于获得分子水平上的结构与性能之间的关系。LB膜的缺点(1) 由于LB膜淀积在基片上时的附着力是依靠分子间作用力,属于物理键力,因此膜的机械性能较差;(2) 要获得排列整齐而且有序的LB膜,必须使材料含有两性基团,这在一定程度上给LB成膜材料的设计带来困难;(3) 制膜过程中需要使用氯仿等有毒的有机溶剂,这对人体健康和环境具有很大的危害性;(4) 制膜设备昂贵,制膜技术要求很高。自组装法近年来出现了许多合成聚合物/无机纳米复合膜的一些新方法。如用自组装技术来制备复合膜,可将有机聚合物模板和无机纳米粒子方便而可控地结合在一起。目前研究热点是LB膜法和静电自组装法。(1)LB膜法:是利用具有疏水端和亲水端的两亲性分子在气-液(一般为水溶液)界面的定向性质,制备纳米微粒与超薄聚合物膜形成的聚合物-无机层交替的复合材料[11]。可实施的有两种方法,一是利用含金属离子的LB膜,通过与H2S进行化学反应得到聚合物-无机纳米复合膜;二是对已制备的纳米粒子直接进行LB膜安装。(2)静电自组装法:是以阴阳离子的静电相互作用为驱动力,制备单层或多层有序膜[12]。先将硅、金属或塑料模板经APS(N-2-(2-aminoethyl)-3-aminopropyltrimethoxysilane)处理使之带正电荷,然后将模板浸入带负电荷的TiO2的溶液中,多次重复该过程就会得到一种多层结构纳米复合材料,可在一定程度上控制微区的形态、结构。辐射合成法自从1984年德国科学家Gleiter等首次用惰性气体凝聚法制得6nm的铁超微粒子并在超真空条件下压制成纳米微晶块体以来[2],纳米材料制备方法已有很大发展。除常见的真空蒸发冷凝法、热等离子体法、球磨法、沉淀法、溶胶凝胶法、水热反应法等以外[3],又出现了辐射合成法[4,5,6]、微乳液法[7]、模板合成法[8]等新方法。其中辐射合成法制备纳米材料具有明显特点:(1)一般采用X射线辐照较大浓度金属盐溶液,制备工艺简单,可在常温常压下操作,制备周期短;(2)产物粒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论