版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆生产建设兵团第二师二十七团中学数学九上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线2.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是()A.y=﹣x2﹣5B.y=﹣x2+1C.y=﹣(x﹣3)2﹣2D.y=﹣(x+3)2﹣23.二次函数的图象如右图所示,若,,则()A., B., C., D.,4.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元5.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图 B.左视图C.俯视图 D.主视图和俯视图6.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足,图象与轴相交于两点,与轴相交于点.给出下列结论:①;②;③若,则;④.其中正确的个数是()A.1 B.2 C.3 D.47.如图,在平面直角坐标系中,点、、为反比例函数()上不同的三点,连接、、,过点作轴于点,过点、分别作,垂直轴于点、,与相交于点,记四边形、、的面积分别为,、、,则()A. B. C. D.8.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为()A. B. C. D.9.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,10.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称11.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5 B.2 C.5或2 D.2或-112.有甲、乙、丙、丁四架机床生产一种直径为20mm圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm,每架机床生产的零件的方差如表:机床型号甲乙丙丁方差mm20.0120.0200.0150.102则在这四台机床中生产的零件最稳定的是().A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.如果关于x的方程x2-5x+a=0有两个相等的实数根,那么a=_____.14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.16.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.17.抛物线y=2x2﹣4x+1的对称轴为直线__.18.抛物线y=(x﹣2)2﹣3的顶点坐标是____.三、解答题(共78分)19.(8分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.20.(8分)计算:21.(8分)如图,在中,以为直径的交于点,连接,.(1)求证:是的切线;(2)若,求点到的距离.22.(10分)已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.(1)求证:△GAE∽△GBF;(2)求证:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的长.23.(10分)(1)计算:|﹣1|+2sin45°﹣+tan260°;(2)已知:,求.24.(10分)已知二次函数y=ax2+bx+c的图象过点A(﹣3,0),B(1,0),C(2,﹣5).(1)求此二次函数的表达式;(2)画出这个函数的图象;(3)△ABC的面积为.25.(12分)解方程:(1)x2﹣1x+5=0(配方法)(2)(x+1)2=1x+1.26.一个小球沿着足够长的光滑斜面向上滚动,它的速度与时间满足一次函数关系,其部分数据如下表:(1)求小球的速度v与时间t的关系.(2)小球在运动过程中,离出发点的距离S与v的关系满足,求S与t的关系式,并求出小球经过多长时间距离出发点32m?(3)求时间为多少时小球离出发点最远,最远距离为多少?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【题目详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【题目点拨】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.2、C【解题分析】先求出原抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【题目详解】y=−x2−2的顶点坐标为(0,−2),∵向右平移3个单位,∴平移后的抛物线的顶点坐标为(3,−2),∴所得到的新抛物线的表达式是y=−(x−3)2−2.故选:C.【题目点拨】考查二次函数图象的平移,掌握二次函数图象平移的规律是解题的关键.3、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【题目详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,
∴25a-20a+4c>0,即5a+4c>0,
∴M>0,
∵当x=1时,y=a+b+c>0,
∴N>0,
故选:A.【题目点拨】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.4、A【解题分析】.所以4月份营业额约为3×30=90(万元).5、B【解题分析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图.故选B.6、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对①②④进行判断,根据,转化为代数,计算的值对③进行判断即可.【题目详解】解:①∵抛物线开口向下,∴,∵抛物线对称轴为直线,∴,∴∴,故①正确,②∵,,∴,又∵抛物线与y轴交于负半轴,∴,∴,故②错误,③∵点C(0,c),,点A在x轴正半轴,∴A,代入得:,化简得:,又∵,∴即,故③正确,④由②可得,当x=1时,,∴,即,故④正确,所以正确的是①③④,故答案为C.【题目点拨】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键.7、C【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可得到结论.【题目详解】解:∵点A、B、C为反比例函数(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,
∴S3=k,S△BOE=S△COF=k,∵S△BOE-SOGF=S△CDF-S△OGF,
∴S1=S2<S3,∴,故选:C.【题目点拨】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.8、D【分析】根据抛物线的图像,判断出的符号,从而确定一次函数、反比例函数的图像的位置即可.【题目详解】解:由抛物线的图像可知:横坐标为1的点,即在第四象限,因此;∴双曲线的图像分布在二、四象限;由于抛物线开口向上,∴,∵对称轴为直线,∴;∵抛物线与轴有两个交点,∴;∴直线经过一、二、四象限;故选:.【题目点拨】本题主要考查二次函数,一次函数以及反比例函数的图象与解析式的系数关系,熟练掌握函数解析式的系数对图像的影响,是解题的关键.9、C【解题分析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【题目详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【题目点拨】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.10、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【题目详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【题目点拨】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.11、D【解题分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【题目详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故选:D.【题目点拨】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.12、A【分析】根据方差的意义,找出方差最小的即可.【题目详解】∵这四台机床的平均数相同,甲机床的方差是0.012,方差最小∴在这四台机床中生产的零件最稳定的是甲;故选:A.【题目点拨】本题考查了方差和平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解.二、填空题(每题4分,共24分)13、【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a的等式,求出a的值.【题目详解】∵关于x的方程x2-5x+a=0有两个相等的实数根,∴△=25-4a=0,即a=.故答案为:.【题目点拨】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14、1【解题分析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【题目详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【题目点拨】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.15、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【题目详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【题目点拨】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.16、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【题目详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【题目点拨】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17、x=1【题目详解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【题目点拨】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).18、(2,﹣3)【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【题目详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【题目点拨】本题考核知识点:抛物线的顶点.解题关键点:熟记求抛物线顶点坐标的公式.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【题目详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)设BC=a,∵AC=2BC,∴AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE为△ABC的中位线,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,∴OD=OE+DE=,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=()2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,∵AB是直径,∴DA与⊙O相切.【题目点拨】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.20、1【分析】先计算特殊的三角函数值和去绝对值,再从左至右计算即可.【题目详解】解:原式=【题目点拨】本题考查的是实数与特殊角的三角函数值的混合运算,能够熟知特殊角的三角函数值是解题的关键.21、(1)见解析;(2)【分析】(1)由是的直径可得,然后利用直角三角形的性质和角的等量代换可得,进而可得结论;(2)易证,于是可利用相似三角形的性质求出AB的长,进而可得AD的长,过作于,则,于是△OHC∽△ADC,然后再利用相似三角形的性质可求得OH的长,问题即得解决.【题目详解】(1)证明:∵是的直径,∴,∴,∵,∴,即,∴是的切线;(2)解:∵,,∴,∴,∴,解得:,∴,过作于,∵,∴,∴△OHC∽△ADC,∴,∴,∴点到的距离是.【题目点拨】本题考查了圆周角定理的推论、圆的切线的判定、相似三角形的判定和性质以及点到直线的距离等知识,属于常考题型,熟练掌握相似三角形的判定和性质是解本题的关键.22、(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE∥BC可直接判定结论;(2)先证△ADE≌△CDF,即可推出结论;(3)由△GAE∽△GBF,可用相似三角形的性质求出结果.【题目详解】(1)∵AE∥BC,∴△GAE∽△GBF;(2)∵AE∥BC,∴∠E=∠F,∠EAD=∠FCD,又∵点D是AC的中点,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF;(3)∵△GAE∽△GBF,∴,又∵AE=CF,∴3,即3,∴AE=1.【题目点拨】本题考查了相似三角形的判定与性质等,解答本题的关键是灵活运用相似三角形的性质.23、(1)2;(2)【分析】(1)利用绝对值的意义、特殊角的三角函数值和二次根式的性质进行计算,再合并即可;
(2)先根据分式的除法将所求式子进行变形,再将已知式子的值代入即可得出结果.【题目详解】解:(1)原式=﹣1+2×﹣2+()2=﹣1+﹣2+3=2;(2)∵,∴.【题目点拨】本题考查了特殊角的三角函数值、二次根式的混合运算以及比例的性质和分式的除法法则,掌握基本运算法则,能灵活运用比例的性质进行变形是解此题的关键.24、(1)y=﹣x2﹣2x+3;(2)答案见解析;(3)1.【分析】(1)设交点式为y=a(x+3)(x﹣1),然后把C点坐标代入求出a即可得到抛物线解析式;(2)利用配方法得到y=﹣(x+1)2+4,则抛物线的顶点坐标为(﹣1,4),抛物线与y轴的交点坐标为(0,3),然后利用描点法画二次函数图象;(3)利用三角形面积公式计算.【题目详解】解:(1)设抛物线解析式为y=a(x+3)(x﹣1),把C(2,﹣5)代入得a(2+3)(2﹣1)=﹣5,解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,则抛物线的顶点坐标为(﹣1,4),当x=0时,y=﹣x2﹣2x+3=3,则抛物线与y轴的交点坐标为(0,3),如图,(3)△ABC的面积=×(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《创新的圆环》课件
- 2024年度淘宝平台商家产品展示与推广合同3篇
- 2024年度智能家居设备外协设计与生产合同3篇
- 2024年度铁路货运安全责任合同范本3篇
- 2024年度医疗设备购置三方贷款及售后保障协议2篇
- 2024年度高端装备制造股权补偿转让协议3篇
- 2024年新型叉车操作员协议3篇
- 《增值税新知识学习》课件
- 2025采购合同签订管理办法合同签订审查备案管理办法
- 2024年标准协议附加条款模板指南版B版
- 校园文明值周总结
- 2024年“农业经理人”职业技能大赛考试题库500题(含答案)
- 《新媒体经典案例分析》题集(附答案)
- 专题19与圆有关的最值问题12种常见考法归类(原卷版)
- 山东2024年山东工业技师学院招聘23人笔试历年典型考题及考点附答案解析
- 碳排放交易合同范本
- 2025届高考写作指导:议论文拟题方法及标题模板
- 知道智慧网课《化学分析》章节测试答案
- 11《葡萄沟》教学课件2023-2024学年统编版语文二年级上册
- JBT 14682-2024 多关节机器人用伺服电动机技术规范(正式版)
- DL-T5434-2021电力建设工程监理规范
评论
0/150
提交评论