高三上学期期中数学真题分类汇编(新高考通用)专题17统计与概率(十二大题型)(原卷版)_第1页
高三上学期期中数学真题分类汇编(新高考通用)专题17统计与概率(十二大题型)(原卷版)_第2页
高三上学期期中数学真题分类汇编(新高考通用)专题17统计与概率(十二大题型)(原卷版)_第3页
高三上学期期中数学真题分类汇编(新高考通用)专题17统计与概率(十二大题型)(原卷版)_第4页
高三上学期期中数学真题分类汇编(新高考通用)专题17统计与概率(十二大题型)(原卷版)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题17统计与概率统计图表1.(2022秋·河北唐山·高三开滦第二中学校考期中)2022年,我国彩电、智能、计算机等产量继续排名全球第一,这标志着我国消费电子产业已经实现从“跟随”到“引领”的转变,开启了高质量发展的新时代.如图是2022年3月至12月我国彩电月度产量及增长情况统计图(单位:万台,%),则关于这10个月的统计数据,下列说法正确的是(

)(注:同比,即和去年同期相比)A.这10个月我国彩电月度产量的中位数为1726万台B.这10个月我国彩电月度平均产量不超过1600万台C.自2022年9月起,各月我国彩电月度产量均同比下降D.这10个月我国彩电月度产量同比增长率的极差不超过2.(江苏省苏州市太仓市明德高级中学20222023学年高三上学期期中)下图反映2017年到2022年6月我国国有企业营业总收入及增速统计情况根据图中的信息,下列说法正确的是(

)A.20172022年我国国有企业营业总收入逐年增加B.20172022年我国国有企业营业总收入逐年下降C.20172021年我国国有企业营业总收入增速最快的是2021年D.20172021年我国国有企业营业总收入的平均数大于630000亿元3.(2022秋·河北保定·高三河北省唐县第一中学校联考期中)(多选)已知某地区中小学生人数如图①所示,为了解该地区中小学生的近视情况,卫生部门根据当地中小学生人数,用分层抽样的方法抽取了的学生进行视力调查,调查数据如图②所示,下列说法正确的有(

)图①

图②A.该地区的中小学生中,高中生占比为B.抽取调查的高中生人数为人C.该地区近视的中小学生中,高中生占比超过D.从该地区的中小学生中任取名学生,记近视人数为,则的数学期望约为4.(福建省泉州市安溪一中、养正中学、惠安一中、泉州实验中学2023届高三期中)(多选)某医院护士对甲、乙两名住院病人一周内的体温进行了统计,其结果如图所示,则下列说法正确的有(

)A.病人甲体温的极差为B.病人乙的体温比病人甲的体温稳定C.病人乙体温的众数、中位数与平均数都为D.病人甲体温的上四分位数为5.(2022秋·江苏南京·高三南京市第二十九中学校考期中)(多选)随着国民经济的快速发展和人民生活水平的不断提高,我国社会物流需求不断增加,物流行业前景广阔.社会物流总费用与GDP的比率是反映地区物流发展水平的指标,下面是年我国社会物流总费用与GDP的比率统计,则(

)A.这5年我国社会物流总费用逐年增长,且2021年增长的最多B.这6年我国社会物流总费用的分位数为万亿元C.这6年我国社会物流总费用与GDP的比率的极差为D.2022年我国的GDP超过了121万亿元频率分布直方图6.(2022秋·重庆沙坪坝·高三重庆一中期中考试)要调查某地区高中学生身体素质,从高中生中抽取人进行跳远测试,根据测试成绩制作频率分布直方图如图,现从成绩在之间的学生中用分层抽样的方法抽取人,应从间抽取人数为,则(

).A., B.,C., D.,7.(河北省高碑店市崇德实验中学2023届高三上学期期中)(多选)为了向社会输送优秀毕业生,中等职业学校越来越重视学生的实际操作(简称实操)能力的培养.中职生小王在对口工厂完成实操产品100件,质检人员测量其质量(单位:克),将所得数据分成5组:.根据所得数据制成如图所示的频率分布直方图,其中质量在内的为优等品.对于这100件产品,下列说法正确的是(

)A.质量的平均数为克(同一区间的平均数用区间中点值代替) B.优等品有45件C.质量的众数在区间内 D.质量的中位数在区间内8.(重庆市第一中学校2023届高三上学期期中)(多选)近年来,加强青少年体育锻炼,重视体质健康已经在社会形成高度共识,某校为了了解学生的身体素质状况,举行了一场身体素质体能测试,以便对体能不达标的学生进行有效地训练,促进他们体能的提升,现从全部测试成绩中随机抽取200名学生的测试成绩,进行适当分组后,画出如图所示频率分布直方图,则(

)A.B.在被抽取的学生中,成绩在区间内的学生有70人C.估计全校学生体能测试成绩的平均数为77D.估计全校学生体能测试成绩的分位数为849.(广东省深圳市红岭中学20222023学年高三上学期期中)(多选)在某市高三年级举行的一次调研考试中,共有30000人参加考试.为了解考生的某科成绩情况,抽取了样本容量为的部分考生成绩,已知所有考生成绩均在,按照的分组作出如图所示的频率分布直方图.若在样本中,成绩落在区间的人数为16,则由样本估计总体可知下列结论正确的为(

)A.B.C.考生成绩的第70百分位数为76D.估计该市全体考生成绩的平均分为7110.(2022秋·江苏南通·高三统考期中)(多选)某书店为了解其受众人群,对100名顾客的年龄进行调研,并将所统计的数据制成如图所示的频率分布直方图.已知是各个小矩形上短边的中点,若点在一条直线上,点在一条直线上,且,则下列描述正确的是(

)A.的值为B.数据的众数大于中位数C.数据的中位数小于平均数D.数据的第80百分位数大于6011.(湖北省七市(州)教研协作体2023届高三上学期期中)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三挡:月用电量不超过200度的部分按元/度收费,超过200度但不超过400度的部分按元/度收费,超过400度的部分按元/度收费.(1)求某户居民月用电费(单位:元)关于月用电量(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占,求的值.线性回归方程12.(湖北省荆门市龙泉中学2023届高三上学期期中)已知两组数据和,其中且时,;且时,,,我们研究这两组数据的相关性,在集合中取一个元素作为a的值,使得相关性最强,则a=(

)A.8 B.11 C.12 D.1313.(安徽省合肥市庐江第五中学20222023学年高三上学期期中)(多选)某同学将收集到的六对数据制作成散点图如下,得到其经验回归方程为,计算其相关系数为,决定系数为.经过分析确定点F为“离群点”,把它去掉后,再利用剩下的五对数据计算得到经验回归方程为,相关系数为,决定系数为.下列结论正确的是(

)A. B.C. D.14.(2022秋·浙江绍兴·高三绍兴一中校考期中)根据统计,某蔬菜基地西红柿亩产量的增加量y(百千克)与某种液体肥料每亩使用量x(千克)之间的对应数据的散点图,如图所示.(1)依据数据的散点图可以看出,可用线性回归模型拟合y与x的关系,请计算相关系数r并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);(2)求y关于x的回归方程,并预测当液体肥料每亩使用量为10千克时,西红柿亩产量的增加量约为多少?附:相关系数公式.参考数据:回归方程中斜率和截距的最小二乘估计公式分别为.15.(江苏省徐州市20222023学年高三上学期期中)如图是某采矿厂的污水排放量单位:吨与矿产品年产量单位:吨的折线图:(1)依据折线图计算相关系数精确到,并据此判断是否可用线性回归模型拟合y与x的关系?若,则线性相关程度很高,可用线性回归模型拟合(2)若可用线性回归模型拟合与的关系,请建立关于的线性回归方程,并预测年产量为10吨时的污水排放量.相关公式:,参考数据:.回归方程中,16.(湖北省部分省级示范高中20222023学年高三上学期期中)小李准备在某商场租一间商铺开服装店,为了解市场行情,在该商场调查了20家服装店,统计得到了它们的面积x(单位:)和日均客流量y(单位:百人)的数据,并计算得,,,.(1)求y关于x的回归直线方程;(2)已知服装店每天的经济效益,该商场现有的商铺出租,根据(1)的结果进行预测,要使单位面积的经济效益Z最高,小李应该租多大面积的商铺?附:回归直线的斜率和截距的最小二乘估计分别为:,.非线性回归方程17.(2022秋·浙江杭州·高三学军中学校考期中)害虫防控对于提高农作物产量具有重要意义.已知某种害虫产卵数(单位:个)与温度(单位:)有关,测得一组数据,可用模型进行拟合,利用变换得到的线性回归方程为.若,则的值为_____.18.(河北省石家庄市第十七中学2023届高三上学期期中)抗体药物的研发是生物技术制药领域的一个重要组成部分,抗体药物的摄入量与体内抗体数量的关系成为研究抗体药物的一个重要方面.某研究团队收集了10组抗体药物的摄入量与体内抗体数量的数据,并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,抗体药物摄入量为x(单位:),体内抗体数量为y(单位:).1216(1)根据经验,我们选择作为体内抗体数量y关于抗体药物摄入量x的回归方程,将两边取对数,得,可以看出与具有线性相关关系,试根据参考数据建立关于的回归方程,并预测抗体药物摄入量为时,体内抗体数量的值;(2)经技术改造后,该抗体药物的有效率z大幅提高,经试验统计得z服从正态分布,那这种抗体药物的有效率超过的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,;②若随机变量,则有,,;③取.19.(河北省沧州市沧县中学2023届高三上学期期中)经观测,长江中某鱼类的产卵数与温度有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如图的散点图及一些统计量表.360表中(1)根据散点图判断,与哪一个适宜作为与之间的回归方程模型并求出关于回归方程;(给出判断即可,不必说明理由)(2)某兴趣小组抽取两批鱼卵,已知第一批中共有6个鱼卵,其中“死卵”有2个;第二批中共有8个鱼卵,其中“死卵”有3个.现随机挑选一批,然后从该批次中随机取出2个鱼卵,求取出“死卵”个数的分布列及数学期望.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.20.(福建省安溪一中、养正中学、惠安一中、泉州实验中学2023届高三上学期期中)中医药是包括汉族和少数民族医药在内的我国各民族医药的统称,是具有悠久历史传统和独特理论技术方法的医药体系,长期呵护着我们的健康,为中华文明的延续作出了突出贡献.某科研机构研究发现,某味中药的药用量x(单位:克)与药物功效(单位:药物功效单位)之间具有关系.(1)估计该味中药的最佳用量与功效;(2)对一批含有这昧中药的合成药物进行检测,发现这味中药的药用量平均值为6克,标准差为2,估计这批合成药的药物功效的平均值.21.(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)五一小长假期间,文旅部门在某地区推出A,B,C,D,E,F六款不同价位的旅游套票,每款套票的价格(单位:元;)与购买该款套票的人数(单位:千人)的数据如下表:套票类别ABCDEF套票价格(元)405060657288购买人数(千人)(注:A,B,C,D,E,F对应i的值为1,2,3,4,5,6)为了分析数据,令,,发现点集中在一条直线附近.(1)根据所给数据,建立购买人数y关于套票价格x的回归方程;(2)规定:当购买某款套票的人数y与该款套票价格x的比值在区间上时,该套票为“热门套票”.现有甲、乙、丙三人分别从以上六款旅游套票中购买一款.假设他们买到的套票的款式互不相同,且购买到“热门套票”的人数为X,求随机变量X的分布列和期望.附:①参考数据:,,,.②对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.22.(2022秋·黑龙江牡丹江·牡丹江一中上学期期中)当前移动网络已融入社会生活的方方面面,深刻改变了人们的沟通、交流乃至整个生活方式.4G网络虽然解决了人与人随时随地通信的问题,但随着移动互联网快速发展,其已难以满足未来移动数据流量暴涨的需求,而5G作为一种新型移动通信网络,不但可以解决人与人的通信问题,而且还可以为用户提供增强现实、虚拟现实、超高清(3D)视频等更加身临其境的极致业务体验,更重要的是还可以解决人与物、物与物的通信问题,从而满足移动医疗、车联网、智能家居、工业控制、环境监测等物联网应用需求,为更好的满足消费者对5G网络的需求,中国电信在某地区推出了六款不同价位的流量套餐,每款套餐的月资费x(单位:元)与购买人数y(单位:万人)的数据如下表:套餐ABCDEF月资费x(元)384858687888购买人数y(万人)对数据作初步的处理,相关统计量的值如下表:其中,且绘图发现,散点集中在一条直线附近.(1)根据所给数据,求出关于的回归方程;(2)已知流量套餐受关注度通过指标来测定,当时相应的流量套餐受大众的欢迎程度更高,被指定为“主打套餐”.现有一家四口从这六款套餐中,购买不同的四款各自使用.记四人中使用“主打套督”的人数为,求随机变量的分布列和期望.附:对于一组数据,其回归方程的斜率和截距的最小二乘估计值分别为.独立性检验23.(江苏省徐州市第七中学2023届高三上学期期中)根据分类变量与的观测数据,计算得到.依据的独立性检验,结论为(

)A.变量与不独立,这个结论犯错误的概率不超过B.变量与不独立,这个结论犯错误的概率不超过C.变量与独立,这个结论犯错误的概率不超过D.变量与独立,这个结论犯错误的概率不超过24.(广东省佛山市第四中学2023届高三上学期期中)2022年支付宝“集五福”活动从1月19日开始,持续到1月31日,用户打开支付宝最新版,通过AR扫描“福”字集福卡(爱国福、富强福、和谐福、友善福、敬业福),在除夕夜22:18前集齐“五福”的用户获得一个大红包.某研究型学习小组为了调查研究“集五福与性别是否有关”,现从某一社区居民中随机抽取200名进行调查,得到统计数据如下表所示:集齐“五福”卡末集齐“五福”卡合计男性8020100女性6535100合计14555200(1)请根据以上数据,由的独立性检验,判断集齐“五福”是否与性别有关;(2)现采用分层抽样的方法从男性的样本中抽取5人,再从这5人中随机抽取3人,求这3人中恰有1人未集齐“五福”卡的概率.参考公式:,其中.25.(浙江省杭州市第二中学滨江校区20222023学年高三上学期期中)为研究大理州居民的身体素质与户外体育锻炼时间的关系,对大理州某社区200名居民平均每天的户外体育锻炼时间进行了调查,统计数据如下表:平均每天户外体育锻炼的时间(分钟)总人数203644504010规定:将平均每天户外体育锻炼时间在分钟内的居民评价为“户外体育锻炼不达标”,在分钟内的居民评价为“户外体育锻炼达标”.(1)请根据上述表格中的统计数据填写下面列联表,并依据小概率值的独立性检验,能否认为性别与户外体育锻炼是否达标有关联?户外体育锻炼不达标户外体育锻炼达标合计男女20110合计(2)从上述“户外体育锻炼不达标”的居民中,按性别用分层抽样的方法抽取5名居民,再从这5名居民中随机抽取3人了解他们户外体育锻炼时间偏少的原因,记所抽取的3人中男性居民的人数为随机变量X,求X的分布列和数学期望;(3)将上述调查所得到的频率视为概率来估计全州的情况,现在从全州所有居民中随机抽取4人,求其中恰好有2人“户外体育锻炼达标”的概率.参考公式:,其中.参考数据:(独立性检验中常用的小概率值和相应的临界值)26.(2022秋·广东广州·高三广州市白云中学校考期中)某城市在创建“国家文明城市”的评比过程中,有一项重要指标是评估该城市在过去几年的空气质量情况,考评组随机调取了该城市某一年中100天的空气质量指数(AQI)的监测数据,结果统计如下表:AQI空气质量优良轻度污染中度污染重度污染天数17482015(1)某企业生产的产品会因为空气污染程度带来一定的经济损失,其中经济损失S(单位:元)与空气质量指数(AQI)(记为x)有关系式,在本年度内随机抽取一天,求这一天的经济损失S大于400元且不超过800元的概率.(2)若本次抽取得样本数据中有30天是在供暖季节,其中有8天为重度污染,完成下面列联表,并判断能否有95%的把握认为该市本年度空气重度污染与供暖有关.重度污染非重度污染合计供暖季的天数非供暖季的天数合计100附:52.07227.(2022秋·河北唐山·高三开滦第二中学上学期期中)网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这名市民中,年龄不超过岁的有人.将所抽样本中周平均网购次数不少于次的市民称为网购迷,且已知其中有名市民的年龄超过岁.(1)根据已知条件完成下面的列联表,并判断是否可以在犯错误的概率不超过的前提下认为网购迷与年龄不超过岁有关?网购迷非网购迷总计年龄不超过岁年龄超过岁总计(2)现将所抽取样本中周平均网购次数不少于次的市民称为超级网购迷,且已知超级网购迷中有名超过岁,若从超级网购迷中任意选取名,求至少有名市民年龄超过岁的概率.附:条件概率28.(河北省唐山市开滦第二中学20222023学年高三上学期期中)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.则在第2次投篮的人是乙的情况下第一次是甲投篮的概率为(

)A. B. C. D.29.(山东省德州市20222023学年高三上学期期中数学试题)(多选)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别用事件和表示从甲罐中取出的球是红球,白球和黑球;再从乙罐中随机取出一球,用事件B表示从乙罐中取出的球是红球,则下列结论正确的是(

)A.B.C.事件B与事件相互独立D.是两两互斥的事件30.(湖南省株洲市五雅中学20222023学年高三上学期期中)甲乙两人进行象棋比赛,先胜三局的人晋级,假设甲每局获胜的概率为(不考虑平局),(1)若比赛三局后结束,求甲晋级的概率;(2)若已知晋级的是甲,求比赛三局后结束的概率.31.(江苏省淮安市涟水县第一中学2023届高三上学期期中)(多选)设是一个随机试验中的两个事件,且,则(

)A. B.C. D.32.(湖南省岳阳市第一中学2023届高三上学期期中)(多选)骰子通常作为桌上游戏的小道具.最常见的骰子是六面骰,它是一个质地均匀的正方体,六个面上分别写有数字,现有一款闯关游戏,共有3关,规则如下:在第关要抛掷六面骰次,每次观察向上面的点数并做记录,如果这次抛掷所出现的点数之和大于,则算闯过第关,,假定每次闯关互不影响,则(

)A.挑战第1关通过的概率为B.直接挑战第2关并过关的概率为C.连续挑战前两关并过关的概率为D.若直接挑战第3关,设“三个点数之和等于15”,“至少出现一个5点”,则33.(2022秋·辽宁丹东·高三统考期中)(多选)一个盒子中装有个黑球和个白球(,均为不小于2的正整数),现从中先后无放回地取2个球.记“第一次取得黑球”为,“第一次取得白球”为,“第二次取得黑球”为,“第二次取得白球”为,则(

)A. B.C. D.全概率公式34.(湖北省宜昌市协作体20222023学年高三上学期期中联考数学试题)某人从A地到B地,乘火车、轮船、飞机的概率分别为,,,乘火车迟到的概率为,乘轮船迟到的概率为,乘飞机迟到的概率为,则这个人从A地到B地迟到的概率是(

)A.0.16 B.0.31 C.0.4 D.35.(2022秋·黑龙江哈尔滨·高三哈尔滨市第六中学校校考期中)(多选)某市场供应多种品牌的N95口罩,相应的市场占有率和优质率的信息如下表:品牌甲乙其他市场占有率优质率在该市场中随机买一种品牌的口罩,记表示买到的口罩分别为甲品牌、乙品牌、其他品牌,记表示买到的口罩是优质品,则(

)A. B.C. D.36.(2022秋·山东潍坊·高三潍坊一中校考期中)(多选)甲箱中有4个红球,3个白球和3个黑球,乙箱中有5个红球,2个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,事件和分别表示由甲箱取出的球是红球,白球和黑球;再从乙箱中随机取出一球,事件表示由乙箱取出的球是红球,则(

)A.事件与事件相互独立 B.C. D.37.(江苏省宿迁市北大附属宿迁实验学校20222023学年高三上学期期中)根据社会人口学研究发现,一个家庭有个孩子的概率模型为:1230(其中)每个孩子的性别是男孩还是女孩的概率均为,且相互独立,事件表示一个家庭有个孩子,事件B表示一个家庭的男孩比女孩多(若一个家庭恰有一个男孩,则该家庭男孩多).(1)若,求,并根据全概率公式求;(2)是否存在值,使得,请说明理由.38.(2022秋·福建福州·高三校联考期中)(1)若和是两个互斥事件,求证:;(2)在孟德尔豌豆试验中,子二代的基因型为,其中为显性基因,为隐性基因,且这三种基因型的比为,如果在子二代中任意选取株豌豆进行杂交试验,试求出子三代中基因型为的概率.39.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)邮件管理是一类非常常见的二元分类问题.如果将“非垃圾邮件”归类为正类邮件,“垃圾邮件”归类为负类邮件,试回答以下问题:(1)若在邮件中正类邮件与负类邮件的占比分别为和,由于归类模型的误差,归类判断可能出错的概率均为.若某个邮件归类为正类邮件,求它原本是正类邮件的概率;(2)在机器学习中,利用算法进行归类,常用分别表示将正类邮件归类为正类邮件的个数,将负类邮件归类为负类邮件的个数,将负类邮件归类为正类邮件的个数,将正类邮件归类为负类邮件的个数.统计发现,收到邮件的种类可能与是否在工作日有关.为了验证此现象,在一段时间内,从数据库中随机抽取若干邮件,包含有正类邮件和负类邮件,按照机器学习的方法进行分类后,得到以下数据:.并给出了下表,试回答以下问题:

时间邮件工作日休息日合计正类70负类18合计(ⅰ)求(充分大)封邮件归类正确的概率;(ⅱ)补充上表,依据小概率值的独立性检验,分析收到邮件的种类与是否在工作日有关?附:.独立事件的概率40.(江苏省南通市如东高级中学2023届高三上学期期中)某校高三举办“三环杯”排球比赛活动,现甲、乙两班进入最后的决赛,决赛采用三局两胜的赛制,决出最后的冠军,甲班在第一局获胜的概率为,从第二局开始,甲班每局获胜的概率受上局比赛结果的影响,若上局获胜,则该局甲班获胜的概率增加,若上局未获胜,则该局甲班获胜的概率减小,且甲班前两局连胜两场获胜的概率为(每局比赛没有平局).(1)求甲班获胜的概率;(2)若冠军奖品为16个排球,且在甲班第一局获胜的情况下,由于不可抗拒力的原因,比赛被迫取消,请问:你认为甲、乙如何分配奖品比较合理.41.(华师─附中等T8联考20222023学年高三上学期期中)为了提高居民参与健身的积极性,某社区组织居民进行乒乓球比赛,每场比赛采取五局三胜制,先胜3局者为获胜方,同时该场比赛结束,每局比赛没有平局.在一场比赛中,甲每局获胜的概率均为p,且前4局甲和对方各胜2局的概率为.(1)求p的值;(2)记该场比赛结束时甲获胜的局数为X,求X的分布列与期望.42.(广东省广州市南沙区东涌中学2023届高三上学期期中)甲、乙两人组成“梦想队”参加“极速猜歌”比赛,比赛共两轮,每轮比赛从队伍中选出一人参与,参与比赛的选手从曲库中随机抽取一首进行猜歌名.若每轮比赛中甲、乙参与比赛的概率相同.甲首次参与猜歌名,猜对的概率为;甲在第一次猜对歌名的条件下,第二次也猜对的概率为;甲在第一次猜错歌名的条件下,第二次猜对的概率为.乙首次参与猜歌名,猜对的概率为;乙在第一次猜对歌名的条件下,第二次也猜对的概率为;乙在第一次猜错歌名的条件下,第二次猜对的概率为甲、乙互不影响.(1)求在两轮比赛中,甲只参与一轮比赛的概率;(2)记“梦想队”一共猜对了首歌名,求的分布列及期望.43.(2022秋·浙江绍兴·高三绍兴一中期中考试)如图,是正三角形,一点从A出发,每次投掷一枚骰子,若向上点数大于或等于5,则沿的边顺时针移动到下一个顶点;若向上的点数小于或等于4,则沿的边逆时针移动到下一个顶点.(1)求投掷2次骰子后,该点恰好回到A点的概率;(2)若投掷4次骰子,记经过B点的次数为X,求.44.(山东省聊城市20222023学年高三上学期期中)甲、乙分别拥有3张写有数字的卡片,甲的3张卡片上的数字分别为X,Y,Z,乙的3张卡片上的数字分别为x,y,z,已知.他们按如下规则做一个“出示卡片,比数字大小”的游戏:甲、乙各出示1张卡片,比较卡片上的数字的大小,然后丢弃已使用过的卡片.他们共进行了三次,直至各自用完3张卡片,且在出示卡片时双方都不知道对方所出示的卡片上的数字.三次“出示卡片,比数字大小”之后,认定至少有两次数字较大的一方获得胜利.(1)若第一次甲出示的卡片上写有数字X,乙出示的卡片上写有数字z,求乙最终获得胜利的概率;(2)记事件“第一次乙出示的卡片上的数字大”,事件“乙获得胜利”,试比较A和B哪个概率大,并说明理由.超几何分布45.(2022秋·山东青岛·高三山东省青岛第一中学校考期中)(多选)一个袋子中装有除颜色外完全相同的10个球,其中有6个黑球,4个白球,现从中任取4个球,记随机变量为取出白球的个数,随机变量为取出黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量为取出4个球的总得分,则下列结论中正确的是(

)A.服从超几何分布 B.C. D.46.(2022秋·山东青岛·高三统考期中)年7月日第届全国中学生生物学竞赛在浙江省萧山中学隆重举行.为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了名学生的成绩,经统计,这批学生的成绩全部介于至之间,将数据按照,,,,,分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计这名学生成绩的中位数;(2)在这名学生中用分层抽样的方法从成绩在,,的三组中抽取了人,再从这人中随机抽取3人,记为3人中成绩在的人数,求的分布列和数学期望;47.(广东省佛山市顺德区2023届高三上学期期中)为了进一步学习贯彻党的二十大精神,准确把握全会的精神实质和重大部署,自觉用精神武装头脑、指导实践、推动工作,某单位组织全体员工开展“红色百年路·科普万里行”知识竞赛,并随机抽取100位员工的竞赛成绩进行统计,按,,,,,,分组制作频率分布直方图如图所示,且,,,成等差数列.(1)求的值并估算100位员工竞赛成绩的中位数(同一组中的数据用区间中点值作代表);(2)规定:成绩在内为优秀,根据以上数据完成列联表,并判断是否有95%的把握认为此次竞赛成绩与年龄有关;优秀非优秀合计岁15岁5合计(3)根据(2)中的数据分析,将频率视为概率,从员工成绩中用随机抽样的方法抽取2人的成绩,记被抽取的2人中成绩优秀的人数为,若每次抽取的结果是相互独立的,求的数学期望.附:,.48.(广东省佛山市第四中学2023届高三上学期期中)为了不断提高教育教学能力,某地区教育局利用假期在某学习平台组织全区教职工进行网络学习.第一学习阶段结束后,为了解学习情况,负责人从平台数据库中随机抽取了300名教职工的学习时间(满时长15小时),将其分成六组,并绘制成如图所示的频率分布直方图(同一组中的数据用该组区间的中点值为代表).(1)求a的值;(2)以样本估计总体,该地区教职工学习时间近似服从正态分布,其中近似为样本的平均数,经计算知.若该地区有5000名教职工,试估计该地区教职工中学习时间在内的人数;(3)现采用分层抽样的方法从样本中学习时间在内的教职工中随机抽取5人,并从中随机抽取3人作进一步分析,分别求这3人中学习时间在内的教职工平均人数.(四舍五入取整数)参考数据:若随机变量服从正态分布,则,,.49.(2022·浙江宁波·高三统考)已知外形完全一样的某品牌电子笔支装一盒,每盒中的电子笔次品最多一支,每盒电子笔有次品的概率是.(1)现有一盒电子笔,抽出两支来检测.①求抽出的两支均是正品的概率;②已知抽出的两支是正品,求剩余产品有次品的概率.(2)已知甲乙两盒电子笔均有次品,由于某种原因将两盒笔完全随机的混合在了一起,现随机选支电子笔进行检测,记为选出的支电子笔中次品的数目,求的分布列和期望.50.(河北省石家庄精英中学2023届高三上学期期中)人工智能是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某校成立了、两个研究性小组,分别设计和开发不同的软件用于识别音乐的类别:“古典音乐”、“流行音乐”和“民族音乐”.为测试软件的识别能力,计划采取两种测试方案.方案一:将首音乐随机分配给、两个小组识别.每首音乐只被一个软件识别一次,并记录结果;方案二:对同一首音乐,、两组分别识别两次,如果识别的正确次数之和不少于三次,则称该次测试通过.(1)若方案一的测试结果显示:正确识别的音乐数之和占总数的;在正确识别的音乐数中,组占;在错误识别的音乐数中,组占.(i)用频率估计概率,两个研究性小组的软件每次能正确识别音乐类别的概率分别为多少?(ii)利用(i)中的结论,求方案二在一次测试中获得通过的概率:(2)若方案一的测试结果如下:音乐类别小组小组测试音乐数量正确识别比例测试音乐数量正确识别比例古典音乐流行音乐民族音乐在小组、小组识别的歌曲中各任选首,记、分别为小组、小组正确识别的数量,试比较、的大小(直接写出结果即可).二项分布51.(湖南省长沙市雅礼中学2023届高三上学期期中)第四届应急管理普法知识竞赛线上启动仪式在3月21日上午举行,为普及应急管理知识,某高校开展了“应急管理普法知识竞赛”活动,现从参加该竞赛的学生中随机抽取100名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“普法王者”,将数据整理后绘制成如图所示的频率分布直方图.(1)若该校参赛人数达20000人,请估计其中有多少名“普法王者”;(2)随机从该高校参加竞赛的学生中抽取3名学生,记其中“普法王者”人数为,用频率估计概率,请你写出的分布列.52.(辽宁省大连市滨城联盟20222023学年高三上学期期中)为了监控某一条生产线的生产过程,从其产品中随机抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图.(1)求这些产品质量指标值落在区间内的频率;(2)若将频率视为概率,从该条生产线的这种产品中随机抽取2件,记这2件产品中质量指标值位于区间内的产品件数为X,求X的分布列与数学期望.53.(山西省运城市2023届高三上学期期中)小明参加一项答题活动,需进行两轮答题,每轮均有道题.第一轮每道题都要作答;第二轮按次序作答,每答对一题继续答下一题,一旦答错或题目答完则结束答题.第一轮每道题答对得5分,否则得0分;第二轮每道题答对得20分,否则得0分.无论之前答题情况如何,小明第一轮每题答对的概率均为,第二轮每题答对的概率均为.设小明第一轮答题的总得分为,第二轮答题的总得分为.(1)若,求;(2)证明:当时,.54.(2022秋·河北邢台·高三统考期中)西梅以“梅”为名,实际上不是梅子,而是李子,中文正规名叫“欧洲李”,素有“奇迹水果”的美誉.因此,每批西梅进入市场之前,会对其进行检测,现随机抽取了10箱西梅,其中有4箱测定为一等品.(1)现从这10箱中任取3箱,求恰好有1箱是一等品的概率;(2)以这10箱的检测结果来估计这一批西梅的情况,若从这一批西梅中随机抽取3箱,记表示抽到一等品的箱数,求的分布列和期望.55.(2022秋·江苏淮安·高三统考期中)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按,,,,分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有名志愿者产生抗体.(i)用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率,求的值;(ⅱ)以(i)中的概率作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量,求最大时的的值.参考公式:(其中为样本容量).56.(2022秋·浙江·高三慈溪中学校联考期中)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,表示选取的人中来自该中学的人数,求的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为,,且,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?57.(2022秋·广东广州·高三广州市白云中学校考期中)某公司在一种传染病毒的检测试剂品上加大了研发投入,其研发的检验试剂品分为两类不同剂型和.现对其进行两次检测,第一次检测时两类试剂和合格的概率分别为和,第二次检测时两类试剂和合格的概率分别为和.已知两次检测过程相互独立,两次检测均合格,试剂品才算合格.(1)设经过两次检测后两类试剂和合格的种类数为X,求X的分布列;(2)若地区排查期间,一户4口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员逐一使用试剂品进行检测,如果有一人检测呈阳性,则检测结束,并确定该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为且相互独立,该家庭至少检测了3个人才确定为“感染高危户”的概率为,若当时,最大,求的值.正态分布58.(辽宁省六校20222023学年高三上学期期中)随机变量服从正态分布,则的最小值为(

)A. B. C. D.59.(2022秋·山东济宁·高三统考期中)设,,这两个正态分布密度曲线如图所示.下列结论中正确的是(

)A. B.C.对任意正数, D.对任意正数,60.(2022秋·河北保定·高三河北省唐县第一中学校考期中)(多选)已知随机变量且,随机变量,若,则(

).A. B.C. D.61.(山东省聊城市第二中学20222023学年高三上学期期中)随机变量服从正态分布,随机变量服从标准正态分布,若,则_____.(用字母表示)62.(广东省深圳市深圳实验学校光明部2023届高三上学期期中)为深入学习党的二十大精神,某学校团委组织了“青春向党百年路,奋进学习二十大”知识竞赛活动,并从中抽取了200份试卷进行调查,这200份试卷的成绩(卷面共100分)频率分布直方图如右图所示.(1)用样本估计总体,求此次知识竞赛的平均分(同一组中的数据用该组区间的中点值为代表).(2)可以认为这次竞赛成绩X近似地服从正态分布N,2(用样本平均数和标准差s分别作为、的近似值),已知样本标准差s7.36,如有84%的学生的竞赛成绩高于学校期望的平均分,则学校期望的平均分约为多少?(结果取整数)(3)从得分区间80,90和90,100的试卷中用分层抽样的方法抽取10份试卷,再从这10份样本中随机抽测3份试卷,若已知抽测的3份试卷来自于不同区间,求抽测3份试卷有2份来自区间80,90的概率.参考数据:若X~N,2

,则PX0.68,P2X20.95,P3X30.99.63.(2022秋·山西朔州·高三统考期中)在正常生产条件下,根据经验,可以认为化肥的有效利用率近似服从正态分布,而化肥施肥量因农作物的种类不同每亩也存在差异.(1)假设生产条件正常,记表示化肥的有效利用率,求;(2)课题组为研究每亩化肥施用量与某农作物亩产量之间的关系,收集了10组数据,并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值.其中每亩化肥施用量为(单位:公斤),粮食亩产量为(单位:百公斤)参考数据:6501515,,2,,.(i)根据散点图判断,与,哪一个适宜作为该农作物亩产量关于每亩化肥施用量的回归方程(给出判断即可,不必说明理由);(ii)根据(i)的判断结果及表中数据,建立关于的回归方程;并预测每亩化肥施用量为27公斤时,粮食亩产量的值.附:①对于一组数据,2,3,,,其回归直线的斜率和截距的最小二乘估计分别为,;②若随机变量,则,.64.(湖北省宜昌市协作体20222023学年高三上学期期中)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)购物群数量(个)122032(1)求实数的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量服从正态分布,其中为(1)中的平均数,.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若服从正态分布,则.均值与方差在决策中的应用65.(2022秋·福建宁德·高三宁德市民族中学校考期中)某公司计划在2020年年初将100万元用于投资,现有两个项目供选择.项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为和;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为,,.(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;(2)若市场预期不变,该投资公司按照(1)中选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据,)66.(2022秋·山东青岛·高三统考期中)投资甲、乙两种股票,每股收益的分布列如表所示:甲种股票:收益x(元)02概率乙种股票:收益y(元)012概率(1)如果有人向你咨询:想投资其中一种股票,你会给出怎样的建议呢?(2)在实际中,可以选择适当的比例投资两种股票,假设两种股票的买入价都是每股1元,某人有10000元用于投资,请你给出一个投资方案,并说明理由.67.(2022秋·广东揭阳·高三普宁市华侨中学校考期中)北京市某区针对高三年级的一次测试做调研分析,随机抽取同时选考物理、化学的学生330名,下表是物理、化学成绩等级和人数的数据分布情况:物理成绩等级化学成绩等级人数(名)11053255701531210(1)从该区高三年级同时选考物理、化学的学生中随机抽取1人,已知该生的物理成绩等级为,估计该生的化学成绩等级为的概率;(2)从该区高三年级同时选考物理、化学的学生中随机抽取2人,以表示这2人中物理、化学成绩等级均为的人数,求的分布列和数学期望(以上表中物理、化学成绩等级均为的频率作为每名学生物理、化学成绩等级均为的概率);(3)记抽取的330名学生在这次考试中数学成绩(满分150分)的方差为,排名前的成绩方差为,排名后的成绩方差为,则不可能同时大于和,这种判断是否正确.(直接写出结论).68.(2022秋·黑龙江哈尔滨·高三哈尔滨七十三中校考期中)某水果店的草莓每盒进价20元,售价30元,草莓保鲜度为两天,若两天之内未售出,以每盒10元的价格全部处理完.店长为了决策每两天的进货量,统计了本店过去40天草莓的日销售量(单位:十盒),获得如下数据:日销售量/十盒78910天数812164假设草莓每日销量相互独立,且销售量的分布规律保持不变,将频率视为概率.(1)记每两天中销售草莓的总盒数为X(单位:十盒),求X的分布列和数学期望;(2)以两天内销售草莓获得利润较大为决策依据,在每两天进16十盒,17十盒两种方案中应选择哪种?69.(江苏省南京东山外国语学校20222023学年高三上学期期中)某校为增强学生保护生态环境的意识,举行了以“要像保护眼睛一样保护自然和生态环境”为主题的知识竞赛.比赛分为三轮,每轮先朗诵一段爱护环境的知识,再答道试题,每答错一道题,用时额外加秒,最终规定用时最少者获胜.已知甲、乙两人参加比赛,甲每道试题答对的概率均为,乙每道试题答对的概率均为,甲每轮朗诵的时间均比乙少秒,假设甲、乙两人答题用时相同,且每道试题是否答对互不影响.(1)若甲、乙两人在第一轮和第二轮答对的试题的总数量相等,求最终乙获胜的概率;(2)请用统计学的知识解释甲和乙谁获胜的可能性更大.70.(2022秋·福建厦门·高三厦门一中校考期中)甲、乙两队进行篮球比赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”,设甲队主场取胜的概率为,客场取胜的概率为,且各场比赛结果相互独立.(1)在比赛进行4场结束的条件下,求甲队获胜的概率;(2)赛事主办方需要预支球队费用万元.假设主办方在前3场比赛每场收入100万元,之后的比赛每场收入200万元.主办方该如何确定的值,才能使其获利(获利=总收入预支球队费用)的期望高于万元?71.(2022秋·重庆长寿·高三重庆市长寿中学校校考期中)某车间购置了三台机器,这种机器每年需要一定次数的维修,现统计了100台这种机器一年内维修的次数,其中每年维修2次的有40台,每年维修3次的有60台,用代表这三台机器每年共需要维修的次数.(1)以频率估计概率,求的分布列与数学期望;(2)维修厂家有两家,假设每次仅维修一台机器,其中厂家单次维修费用是550元,厂家对同一车间的维修情况进行记录,前5次维修费用是每次600元,后续维修费用每次递减100元,从每年的维修费用的期望角度来看,选择哪家厂家维修更加节省?1.(山东省淄博市临淄中学20222023学年高三上学期期中)近年来,网络消费新业态、新应用不断涌现,消费场景也随之加速拓展,某报社开展了网络交易消费者满意度调查,某县人口约为50万人,从该县随机选取5000人进行问卷调查,根据满意度得分分成以下5组:、、、,统计结果如图所示.由频率分布直方图可认为满意度得分X(单位:分)近似地服从正态分布,且,,,其中近似为样本平均数,近似为样本的标准差s,并已求得.则以下不正确的是(

)A.由直方图可估计样本的平均数约为B.由直方图可估计样本的中位数约为75C.由正态分布估计全县的人数约为万人D.由正态分布估计全县的人数约为万人2.(2022秋·江苏南通·高三统考期中)下列说法不正确的是(

)A.甲、乙、丙三种个体按的比例分层抽样调查,若抽取的甲种个体数为9,则样本容量为18B.设一组样本数据,,…,的方差为2,则数据,,.…,的方差为32C.在一个列联表中,计算得到的值,则的值越接近1,可以判断两个变量相关的把握性越大D.已知随机变量,且,则3.(湖北省襄阳市部分学校20222023学年高三上学期期中考)已知随机变量,且,则的最大值为(

)A. B.C. D.4.(2022秋·吉林长春·高三长春市第十七中学上学期期中)甲、乙、丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,下列说法正确的是(

)A.2次传球后球在丙手上的概率是 B.3次传球后球在乙手上的概率是C.3次传球后球在甲手上的概率是 D.n次传球后球在甲手上的概率是5.(福建省泉州市剑影实验学校2022届高三上学期期中)(多选)高中某学校对一次高三联考物理成绩进行统计分析,随机抽取100名学生成绩得到如图所示的频率分布直方图,其中分组的区间为,同时计划从样本中随机抽取个体进行随访,若从样本随机抽取个体互不影响,把频率视为概率,则下列结论正确的是(

)A.学生成绩众数估计为75分B.考生成绩的第75百分位成绩估计为80分C.在内随机抽取一名学生访谈,则甲被抽取的概率为D.从和内各抽1名学生,抽2名学生调研,又从他们中任取2人进行评估测试,则这2人来自不同组的概率为6.(山东省泰安市宁阳县20222023学年高三上学期期中)(多选)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对本校学生体育锻的经常性有影响,随机抽取了300名学生,对他们是否经常锻炼的情况进行了调查,调查发现经常锻炼人数是不经常锻炼人数的2倍,绘制其等高堆积条形图,如图所示,则(

)A.参与调查的男生中经常锻炼的人数比不经常锻炼的人数多B.从参与调查的学生中任取一人,已知该生为女生,则该生经常锻炼的概率为C.依据的独立性检验,认为性别因素影响学生体育锻炼的经常性,该推断犯错误的概率不超过D.假设调查人数为600人,经常锻炼人数与不经常锻炼人数的比例不变,统计得到的等高堆积条形图也不变,依据的独立性检验,认为性别因素影响学生体育锻炼的经常性,该推断犯错误的概率不超过附:,7.(福建省泉州市安溪一中、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论