26.矩形菱形与正方形B_第1页
26.矩形菱形与正方形B_第2页
26.矩形菱形与正方形B_第3页
26.矩形菱形与正方形B_第4页
26.矩形菱形与正方形B_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

矩形菱形与正方形一、选择题1.(2016河北,6,3分)关于ABCD的叙述,正确的是()A.若AB⊥BC,则ABCD是菱形 B.若AC⊥BD,则ABCD是正方形C.若AC=BD,则ABCD是矩形 D.若AB=AD,则ABCD是正方形答案:B解析:A项应是矩形;B项应是菱形;D项应是菱形。知识点:矩形的判定:先判断是平行四边形,再利用对角线相等或者有一个角是直角判定。菱形的判定:先判断是平行四边形,再利用对角线垂直或一组相邻的边相等判定。正方形的判定:①先确定是矩形,再证明对角线垂直或邻边相等;②先确定是菱形,再证明有个角是直角或者对角线相等。2.(2016,7,3分)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【考点】中心对称图形;角平分线的性质;直角三角形斜边上的中线;菱形的性质.【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.3.(2016江苏宿迁,7,3分)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为() A.2 B. C. D.1【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值. 【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处, ∴FB=AB=2,BM=1, 则在Rt△BMF中, FM=, 故选:B. 【点评】此题考查了翻折变换的性质,适时利用勾股定理是解答此类问题的关键. 4.(2016四川内江,9,3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形[答案]C[解析]满足选项A或选项B中的条件时,不能推出四边形是平行四边形,因此它们都是假命题.由选项D中的条件只能推出四边形是菱形,因此也是假例题.只有选项C中的命题是真命题.故选C.5.(2016四川泸州,11,3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为A.B.C.D.【答案】B 6.(2016青海西宁,7,3分)将一张长方形纸片折叠成如图2所示的形状,则A. B. C. D.【答案】A7.(2016四川宜宾,6,3分)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.8.(2016四川资阳,9,3分)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:C.9.(2016广东深圳,12,3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②;③∠ABC=∠ABF;④,其中正确的结论个数是()A.1B.2C.3D.4【答案】D提示:∵CA=CB,∠C=∠CBF=90°∴∠ABC=∠ABF=45°,故正确∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°∴△ACD∽△FEQ∴AC∶AD=FE∶FQ∴AD·FE=AD²=FQ·AC,故④正确二、填空题16.(2016青海西宁,16,2分)如图5,在菱形中,,分别是,的中点,若,则菱形的周长是.【答案】1617.(2016甘肃定西,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=cm. 【分析】延长原矩形的边,然后根据两直线平行,内错角相等可得∠1=∠ACB,根据翻折变换的性质可得∠1=∠ABC,从而得到∠ABC=∠ACB,再根据等角对等边可得AC=AB,从而得解. 【解答】解:如图,延长原矩形的边, ∵矩形的对边平行, ∴∠1=∠ACB, 由翻折变换的性质得,∠1=∠ABC, ∴∠ABC=∠ACB, ∴AC=AB, ∵AB=6cm, ∴AC=6cm. 故答案为:6. 【点评】本题考查了翻折变换的性质,平行线的性质,等腰三角形的判定,熟记各性质是解题的关键,难点在于作出辅助线. 14.(2016浙江杭州,14,4分)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为【答案】或15.(2016四川内江,15,5分)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.DDOCEBA图4[答案][解析]∵菱形的对角线互相垂直平分,∴OB=3,OC=4,∠BOC=90°.∴BC==5.∵S△OBC=OB·OC,又S△OBC=BC·OE,∴OB·OC=BC·OE,即3×4=5OE.∴OE=.故答案为:.18.(2016海南省,18,4分)如图7,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是_________________(只填写序号).【答案】①②③④9.(2016苏州9,3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中的,点E在AB上,当△CDE的周长最小时,点E的坐标为A.B.C.D.答案:A13.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=_______.AP(C)D E BFC(第13题)【考点】矩形的性质、图形的变换(折叠)、30°度角所对的直角边等于斜边的一半、勾股定理.【分析】根据折叠的性质,知EC=EP=2a=2DE;则∠DPE=30°,∠DEP=60°,得出∠PEF=∠CEF=(180°-60°)=60°,从而∠PFE=30°,得出EF=2EP=4a,再勾股定理,得出FP的长.【解答】解:∵DC=3DE=3a,∴DE=a,EC=2a.根据折叠的性质,EC=EP=2a;∠PEF=∠CEF,∠EPF=∠C=90°.根据矩形的性质,∠D=90°,在Rt△DPE中,EP=2DE=2a,∴∠DPE=30°,∠DEP=60°.∴∠PEF=∠CEF=(180°-60°)=60°.∴在Rt△EPF中,∠PFE=30°.∴EF=2EP=4a

在Rt△EPF中,∠EPF=90°,EP=2a,EF=4a,

∴根据勾股定理,得FP==a.故答案为:a18.(2016广西贺州,18,3分)在矩形ABCD中,∠B的角平分线BE与AD交于点E;∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=(结果保留根号).BBADCFE【答案】6eq\R(2)+38.(2016湖南湘西,8,4分)如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为24.【考点】菱形的性质.【分析】直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算即可.【解答】解:菱形的面积=×6×8=24,故答案为:24.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.菱形面积等于两条对角线的长度的乘积的一半.16.(2016江苏南京,16,2分)如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为_______.答案:13考点:菱形、正方形的性质及其面积的计算方法,勾股定理。解析:连结AC、BD交于点O,由对称性知,菱形的对角线BD过点E、F,由菱形性质知,BD⊥AC,所以,=120①,又正方形的面积为50,所以,AE=,所以,AO2+EO2=50,AO=EO=5所以,AC=10,代入①式,得BD=24,所以,BO=12,由AO2+BO2=AB2,得AB=1316.(2016江苏宿迁,16,3分)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4. 【分析】如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个. 【解答】解:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个, △P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C), 则AB=AD=4, 故答案为4. 【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.16.(2016湖北襄阳,16,3分)如图,正方形ABCD的边长为2,对角线AC,BD相交于点0,E是OC的中点。连接BE,过点A作AM⊥BE于点M交BD于点F则FM的长为.【答案】三、解答题(2016广东梅州,18,7分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.四边形ABEF是_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________°.(直接填写结果)解:(1)菱形………3分(2),120………7分(每空2分(2016江苏苏州,24,8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.(2016湖南娄底,24,9分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.【解答】(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠AEC,∴四边形A1BCE是平行四边形,∴A1B=BC,∴四边形A1BCE是菱形.18.(2016,18,6分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【考点】矩形的性质;全等三角形的判定与性质.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),BADCFEO23.(2016广西贺州,23,9分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点BADCFEO(1)求证:四边形AECF是菱形;(2)若AB=eq\R(3),∠DCF=30°,求四边形AECF的面积(结果保留根号).【答案】(1)证明:∵O是AC的中点,EF⊥AC,∴AF=CF,AE=CE,AO=CO,******************1分∵四边形ABCD是矩形∴AD∥BC∴∠AFE=∠CEF,******************2分在△AOF和△COE中,∠AFE=∠CEF,∠AOF=∠COE,AO=CO,∴△AOF≌△COE******************4分∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形******************5分(2)∵四边形ABCD是矩形∴CD=AB=eq\R(3),******************6分在△CDF中,∵eq\F(CD,CF)=cos∠DCF,∠DCF=30°,∴CF=eq\F(CD,cos30°)=eq\F(\R(3),\F(\R(3),2))=2******************7分∵四边形AECF是菱形∴CE=CF=2******************8分∴四边形AECF的面积为:EC×AB=2×eq\R(3)=2eq\R(3)******************9分24.(2016•四川达州,24,10分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)成立,∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,CF=BD∴∠ACB+∠ACF=90°,即CF⊥BD;∵BC=BD+CD,∴BC=CF+CD;(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.【点评】本题考查了全等三角形的判定和性质,正方形的性质,余角的性质,勾股定理,等腰直角三角形的判定和性质,矩形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.19.(2016•四川乐山,19,9分)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.【分析】欲证明CE=DF,只要证明△CEB≌△DFC即可.【解答】证明:∵ABCD是正方形,∴AB=BC=CD,∠EBC=∠FCD=90°,又∵E、F分别是AB、BC的中点,∴BE=CF,在△CEB和△DFC中,,∴△CEB≌△DFC,∴CE=DF.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握正方形的性质以及全等三角形的判定和性质,属于基础题,中考常考题型.22.(2015•浙江舟山,22,10分)如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.【分析】(1)连接BD根据三角形的中位线的性质得到CH∥BD,CH=BD,同理FG∥BD,FG=BD,由平行四边形的判定定理即可得到结论;(2)根据三角形的中位线的性质和正方形的性质即可得到结果;(3)根据勾股定理得到BD=,由三角形的中位线的性质得到FG=BD=,于是得到结论.【解答】(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.【点评】本题考查了平行四边形的判定和性质,正方形的性质,勾股定理,正确的作出图形是解题的关键.21.(2016新疆生产建设兵团,21,11分)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.【考点】平行四边形的性质;菱形的判定;轴对称-最短路线问题;翻折变换(折叠问题).【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论