中考二次函数压轴题解题通法(重点中学整理)(同名4825)_第1页
中考二次函数压轴题解题通法(重点中学整理)(同名4825)_第2页
中考二次函数压轴题解题通法(重点中学整理)(同名4825)_第3页
中考二次函数压轴题解题通法(重点中学整理)(同名4825)_第4页
中考二次函数压轴题解题通法(重点中学整理)(同名4825)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页中考二次函数压轴题———解题通法研究二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,在宜宾市的拔尖人才考试中同样有二次函数大题,在成都,绵阳,泸县二中等地的外地招生考试中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。所以二次函数综合题自然就成了相关出题老师和专家的必选内容。我通过近6年的研究,思考和演算了上1000道二次函数大题,总结出了解决二次函数压轴题的通法,供大家参考。几个自定义概念:三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。如:动点P在y=2x+1上,就可设P(t,2t+1).若动点P在y=,则可设为P(t,)当然若动点M在X轴上,则设为(t,0).若动点M在Y轴上,设为(0,t).动三角形:至少有一边的长度是不确定的,是运动变化的。或至少有一个顶点是运动,变化的三角形称为动三角形。动线段:其长度是运动,变化,不确定的线段称为动线段。定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。定直线:其函数关系式是确定的,不含参数的直线称为定直线。如:y=3x-6。X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x标,纵坐标称为y标。直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。动点坐标“一母示”是针对直接动点坐标而言的。1.求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。2、“平行于y轴的动线段长度的最大值”的问题:由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。3、求一个已知点关于一条已知直线的对称点的坐标问题: 先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。5.常数问题:(1)点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。(2)三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。(3)几条线段的齐次幂的商为常数的问题:用K点法设出直线方程,求出与抛物线(或其它直线)的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可。6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。7.三角形周长的“最值(最大值或最小值)”问题:“在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):割),列出面积方程”。19.“在相关函数解析式不确定(系数中还含有某一个参数字母)的情况下,题中又含有动图形(常为动三角形或动四边形)的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”(即动解析式和动图形相结合的问题)。如果动图形不是基本模型,就先把动图形的面积进行转化或分割(转化或分割后的图形须为基本模型),设出动点坐标(一母示),利用转化或分割后的图形建立面积关系的方程(或方程组)。解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标(注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉)。再注意图中另一个点与该点的位置关系(或其它关系,方法是常由已知或利用(2)问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可。如果动图形是基本模型,就无须分割(或转化)了,直接先设出动点坐标(一母式),然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同。一句话,该问题简称“双动问题”,解题方法是“转化(分割),设点标,建方程,再代入,得结论”。中考二次函数压轴题分析【凉山州中考】如图,在平面直角坐标系中,直线y=x+4与x轴,y轴分别交于A,B,两点,抛物线经过A,B,两点,并与x轴交于另一点C(点C在点A的右侧),点P是抛物线上一动点。(1)求抛物线的解析式及点C的坐标.(2)若点P在第二象限内,过点P作PDx轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?YXYXOBPCA【广安市中考】在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=3/4。将△OAB绕着原点O逆时针旋转90o,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180o,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2。(1)求抛物线的解析式;(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标;(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由。【乐山中考】如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.【成都中考】如图,在平面直角坐标系xOy中,一次函数(为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线(为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于,两点,试探究是否为定值,并写出探究过程.【2013绵阳市中考】如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m>1)与x轴交于D。(1)求二次函数的解析式和B的坐标;(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);[来*源%:zz#step&@.com]ABCDOXYl(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使ABCDOXYl [中~国&%教*育出^版网][来&*~源:中^教%网]【自贡市中考】如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论