版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市金桥中学2022-2023学年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.极坐标方程所表示的曲线是(
)A.一条直线
B.一个圆
C.一条抛物线
D.一条双曲线参考答案:C略2.直线与圆有两个不同交点,则满足().
A.
B.
C.
D.参考答案:A3.若复数ii是实数i是虚数单位,则实数的值为(
)A.
B.
C.
D.参考答案:C4.已知,为虚数单位,且,则的值为(
)A.4 B.4+4 C. D.2参考答案:D略5.已知函数,若,则的取值范围是A.
C.
C.
D.参考答案:D略6.椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为(A)
(B)
(C)
(D)
参考答案:C
椭圆的焦距为4,所以因为准线为,所以椭圆的焦点在轴上,且,所以,,所以椭圆的方程为,选C.7.与直线平行且与抛物线相切的直线方程是(
)A.
B.
C.
D.参考答案:D略8.函数f(x)=2(x-x3)e|x|的图像大致是参考答案:B9.已知数列满足:,则(
)A、
B、
C、
D、参考答案:B10.已知等比数列的前三项依次为A.
B.
C.
D.参考答案:C试题分析:由于等比数列的前三项依次为,得,解得,因此前三项依次为4,6,9,公比,因此,故答案为C.考点:等比数列的通项公式.二、填空题:本大题共7小题,每小题4分,共28分11.已知无穷数列满足:.则数列的前项和的最小值为
.参考答案:-30试题分析:由已知得数列是以-10为首项,2为公差的等差数列;所以即由知:当时;当时;当时;故知数列的前项和的最小值为或;故答案为-30.考点:等差数列.12.已知实数x,y满足,则z=(x﹣1)2+y2的最小值是
.参考答案:2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,则z=(x﹣1)2+y2的几何意义为动点P(x,y)到定点(1,0)的距离的平方,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:则z=(x﹣1)2+y2的几何意义为动点P(x,y)到定点(1,0)的距离的平方,过点A(1,0)作AB垂直直线x+y﹣3=0,则|AB|的距离最小,则圆心A到直线x+y﹣3=0的距离d=,此时z=d2=2,故答案为:2.13.若存在实常数k和b,使得函数对其公共定义域上的任意实数x都满足:恒成立,则称此直线的“隔离直线”,已知函数(e为自然对数的底数),有下列命题:①内单调递增;②之间存在“隔离直线”,且b的最小值为-4;③之间存在“隔离直线”,且k的取值范围是[-4,1];④之间存在唯一的“隔离直线”.其中真命题的序号为__________.(请填写正确命题的序号)参考答案:①②④解析:①,,,,在内单调递增,故①正确;②,③设的隔离直线为,则对任意恒成立,即有对任意恒成立.由对任意恒成立得.若则有符合题意;若则有对任意恒成立,又则有,,即有且,,,同理,可得,所以,,故②正确,③错误;④函数和的图象在处有公共点,因此存在和的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为,则隔离直线方程为,即,由恒成立,若,则不恒成立.若,由恒成立,令,在单调递增,,故不恒成立.所以,可得,当恒成立,则,只有,此时直线方程为,下面证明,令,,当时,;当时,;当时,;当时,取到极小值,极小值是,也是最小值,,则,函数和存在唯一的隔离直线,故④正确,故答案为①②④.14.(选修4-1:几何证明选讲)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC=
▲
.参考答案:15.定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“等比函数”。现有定义在上的如下函数:①;②;③;④,则其中是“等比函数”的的序号为
.参考答案:16.如图(),直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图(b),(c)所示,则其左视图的面积为_______________.参考答案:17.将的图像向右平移2个单位后得曲线,将函数的图像向下平移2个单位后得曲线,与关于轴对称.若的最小值为且,则实数的取值范围为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等差数列的公差大于,且.若分别是等比数列的前三项.(Ⅰ)求数列的通项公式;(Ⅱ)记数列的前项和为,若,求的取值范围.参考答案:(Ⅰ)设等差数列的公差为,是等比数列的前三项,,即,化简得,
………4分又..
………6分
(Ⅱ)依题意可得是等比数列的前三项,………………
8分等比数列的公比为,首项为.等比数列的前项和为.
………10分由,得,化简得.解得,.
………
12分19.(本题满分13分)已知曲线,是曲线C上的点,且满足,一列点在x轴上,且是坐标原点)是以为直角顶点的等腰直角三角形.w
Ww.xKb1.coM(Ⅰ)求、的坐标;(Ⅱ)求数列的通项公式;(Ⅲ)令,,是否存在正整数N,当n≥N时,都有<,若存在,求出N的最小值;若不存在,说明理由.参考答案:(Ⅰ)∵?B0A1B1是以A1为直角顶点的等腰直角三角形,
∴直线B0A1的方程为y=x.由得,,得A1(2,2),.….…….…….…......3分(Ⅱ)根据和分别是以和为直角顶点的等腰直角三角形可
得,,即.(*)…….………..5分∵和均在曲线上,∴,∴,代入(*)式得,∴().…
…………..…..….…..7分∴数列是以为首项,2为公差的等差数列,故其通项公式为().…………....…………...……..8分(Ⅲ)由(Ⅱ)可知,,∴,∴,,∴
=
==,=.
欲使<,只需<,只需,
,∴不存在正整数N,使n≥N时,<成立.…….13分20.(本小题满分12分)以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆C的左顶点为P,左焦点为F,上顶点为Q,且满足.(I)求椭圆C及其“准圆”的方程;(II)若椭圆C的“准圆”的一个弦ED(不与坐标轴垂直)与椭圆C交于M、N两点,试证明:当时,试问弦ED的长是否为定值,若是,求出该定值;若不是,请说明理由.参考答案:21.在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.(1)求椭圆E的离心率;(2)判断直线与圆的位置关系,并说明理由;(3)若圆的面积为,求圆的方程.参考答案:【解】(1)设椭圆E的焦距为2c(c>0),因为直线的倾斜角的正弦值为,所以,于是,即,所以椭圆E的离心率
…………4分(2)由可设,,则,于是的方程为:,故的中点到的距离,
…………6分又以为直径的圆的半径,即有,所以直线与圆相切.
………8分(3)由圆的面积为知圆半径为1,从而,
………10分设的中点关于直线:的对称点为,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁中医药大学《C程序设计及医学应用》2023-2024学年第一学期期末试卷
- 兰州理工大学《医学实验基本技术与设备》2023-2024学年第一学期期末试卷
- 集美大学《口腔人文医学》2023-2024学年第一学期期末试卷
- 湖南文理学院芙蓉学院《社会保障发展前沿》2023-2024学年第一学期期末试卷
- 湖南高速铁路职业技术学院《世界建筑装饰风格与流派》2023-2024学年第一学期期末试卷
- 重庆邮电大学《计算机学科课程教学论》2023-2024学年第一学期期末试卷
- 重庆健康职业学院《工程造价及管理》2023-2024学年第一学期期末试卷
- 中原工学院《软件质量保证与测试实验》2023-2024学年第一学期期末试卷
- 浙江农林大学暨阳学院《野生动植物保护与管理》2023-2024学年第一学期期末试卷
- 中国石油大学(华东)《表演基础元素训练》2023-2024学年第一学期期末试卷
- 建设项目施工现场春节放假期间的安全管理方案
- GB/T 19867.5-2008电阻焊焊接工艺规程
- 2023年市场部主管年终工作总结及明年工作计划
- 国有资产出租出借审批表(学校事业单位台账记录表)
- 30第七章-农村社会治理课件
- 考研考博-英语-东北石油大学考试押题三合一+答案详解1
- 出国学生英文成绩单模板
- 植物细胞中氨基酸转运蛋白的一些已知或未知的功能
- 山东省高等学校精品课程
- 三菱张力控制器LE-40MTA-E说明书
- 生活垃圾填埋场污染控制标准
评论
0/150
提交评论