2022新高考数学高频考点题型归纳35直线、平面垂直的判定与性质(学生版)_第1页
2022新高考数学高频考点题型归纳35直线、平面垂直的判定与性质(学生版)_第2页
2022新高考数学高频考点题型归纳35直线、平面垂直的判定与性质(学生版)_第3页
2022新高考数学高频考点题型归纳35直线、平面垂直的判定与性质(学生版)_第4页
2022新高考数学高频考点题型归纳35直线、平面垂直的判定与性质(学生版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题35直线、平面垂直的判定与性质一、关键能力1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;2.掌握公理、判定定理和性质定理.二、教学建议1.以几何体为载体,考查线线、线面、面面垂直证明.2.利用垂直关系及垂直的性质进行适当的转化,处理综合问题.3.本节是高考的必考内容.预测2020年高考将以直线、平面垂直的判定及其性质为重点,涉及线线垂直、线面垂直及面面垂直的判定及其应用,题型为解答题中的一问,或与平行相结合进行命题的判断.以及运用其进一步研究体积、距离、角的问题,考查转化与化归思想、运算求解能力及空间想象能力.三、自主梳理 定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.定理:文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.eq\b\lc\\rc\}(\a\vs4\al\co1(aα,bα,l⊥a,l⊥b,a∩b=A))⇒l⊥α性质定理如果两条直线同垂直于一个平面,那么这两条直线平行.eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))⇒a∥b知识点2.平面与平面垂直的判定与性质定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.定理:文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.eq\b\lc\\rc\}(\a\vs4\al\co1(ABβ,AB⊥α))⇒β⊥α性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,α∩β=MN,ABβ,AB⊥MN))⇒AB⊥α知识点3.线面、面面垂直的综合应用1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一直线的两平面平行.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.四、高频考点+重点题型考点一与线、面垂直相关命题的判定例1-1.(2021·浙江期末)已知,是两个不同的平面,直线,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件例1-2.(2021·湖南省安化二中模拟)如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC训练1.【多选题】(2021·南京市宁海中学高一月考)如图,在正方体中,线段上有两个动点,,若线段长度为一定值,则下列结论中正确的是()A. B.平面C.平面 D.三棱锥的体积为定值考点二直线与平面垂直的判定与性质例2-1.(线面垂直的判定)(2021·河北易县中学)在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;例2-2.(线面垂直的性质)(2020·云南省下关第一中学高二月考(文))如图,四棱锥的底面是边长为的菱形,底面.(1)求证:平面;(2)若,直线与平面所成的角为,求点到平面的距离.考点三面面垂直的判定与性质例3-1.(面面垂直的判定)(2020·全国高考真题(文))如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P−ABC的体积.例3-2.(面面垂直的性质)如图,在四棱锥中,底面为菱形,,,面面,为等边三角形,为的中点.若是的中点,求三棱锥的体积.训练1.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面训练2.(2021·全国高考真题(文))如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.考点四、线线垂直的判定例4.(2021·全国高考真题(文))已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.ABCDD1A1ABCDD1A1C1B1EABCDD1A1C1BEABCDD1A1C1B1F求证⊥.训练3.如图,在长方体中,,是的中点,ABCDD1ABCDD1A1C1B1EABCDD1A1C1ABCDD1A1C1B1E求证⊥.ABCDP训练5.如图,在四棱锥中,底面,且底面是菱形,ABCDP求证⊥.OABPC训练6.如图,是圆的直径,垂直于圆所在平面,是圆上不同于的任一点,求证:⊥平面.OABPC考点五、平行与垂直的互相利用例5-1.(2021·安徽省舒城中学)设m,n是空间两条不同的直线,α,β是空间两个不同的平面.给出下列四个命题:①若m∥α,n∥β,α∥β,则m∥n;②若α⊥β,m⊥β,m⊄α,则m∥α;③若m⊥n,m⊥α,α∥β,则n∥β;④若α⊥β,α∩β=l,m∥α,m⊥l,则m⊥β.其中正确的是()A.①② B.②③ C.②④ D.③④例5-2.(2021·湖南期末)如图,在三棱柱中,,,.证明:平面平面;训练1.(2021·浙江高考真题)如图已知正方体,M,N分别是,的中点,则()A.直线与直线垂直,直线平面B.直线与直线平行,直线平面C.直线与直线相交,直线平面D.直线与直线异面,直线平面考点六、垂直的探索例6-1.如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,且底面各边都相等,M是边PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)例6-2.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确结论的序号是________.(写出所有正确结论的序号)例6-3.如图,直三棱柱ABC­A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.例6-4.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=eq\f(π,3),△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB;(2)若E在线段BC上,且EC=eq\f(1,4)BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥D-CEG的体积;若不存在,请说明理由.巩固训练一、单项选择题1.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n(2021·河北唐山模拟)如图,在以下四个正方体中,直线AB与平面CDE垂直的是()A.①② B.②④C.①③ D.②③3.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE4.(2020·四川省眉山中学模拟)如图,在斜三棱柱ABC­A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC多项选择题7.判断下列结论中正确的是()A.垂直于同一个平面的两平面平行.B.直线a⊥α,b⊥α,则a∥b.C.若直线a⊥平面α,直线b∥α,则直线a与b垂直.D.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.8.如图PA⊥圆O所在平面,AB是圆O的直径,C是圆O上一点,AE⊥PC,AF⊥PB,给出下列结论,其中真命题的是()A.AE⊥BCB.EF⊥PBC.AF⊥BCD.AE⊥平面PBC,三、填空题9.(2021·北京101中学期末)设,是两个不同的平面,l是直线且,则“”是“”的______.条件(参考选项:充分不必要,必要不充分,充分必要,既不充分也不必要).10.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.11.在正三棱锥(底面为正三角形且侧棱相等)P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.12.(1)三角形的一边BC在平面α内,l⊥α,垂足为A,ABC,P在l上滑动,点P不同于A,若∠ABC是直角,则△PBC是________三角形;(2)直角三角形PBC的斜边BC在平面α内,直角顶点P在平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论