版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市国藩学校高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,向量,且与的夹角为,则在方向上的投影是(
★
)ks5uA.
B.
C.
D.
参考答案:B略2.与y=|x|为同一函数的是()A. B.C. D.参考答案:B【考点】判断两个函数是否为同一函数.【专题】计算题.【分析】先判断两个函数的定义域是否是同一个集合,再判断两个函数的解析式是否可以化为一致.【解答】解:A、∵y=|x|的定义域为(﹣∞,+∞).的定义域是[0,+∞),∴不是同一个函数B、∵两个函数的解析式一致,定义域是同一个集合,∴是同一个函数C、∵y=|x|的定义域为(﹣∞,+∞).的定义域是(﹣∞,0)∪(0,+∞),∴不是同一个函数D、∵y=|x|的定义域为(﹣∞,+∞).的定义域是[0,+∞),∴不是同一个函数故选B.【点评】两个函数解析式表示同一个函数需要两个条件:①两个函数的定义域是同一个集合;②两个函数的解析式可以化为一致.这两个条件缺一不可,必须同时满足.3.已知α角与120°角的终边相同,那么的终边不可能落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:C【考点】终边相同的角;象限角、轴线角.【分析】首先利用终边相同角的表示方法,写出α的表达式,再写出的表达式,由此判断终边位置.【解答】解:∵α角与120°角的终边相同,∴α=360°k+120°(k∈N)=120°k+40°(k∈Z)当k=3n(n∈Z)时,=360°n+40°(k∈Z),此时的终边落在第一象限,当k=3n+1(n∈Z)时,=360°n+160°(k∈Z),此时的终边落在第二象限,当k=3n+2(n∈Z)时,=360°n+280°(k∈Z),此时的终边落在第四象限,综上所述,的终边不可能落在第三象限故选C4.函数的定义域为(
)A.(-5,+∞) B.[-5,+∞ C.(-5,0)D.(-2,0)参考答案:A略5.圆柱的侧面展开图是边长为4的正方形,则圆柱的体积是
(
)A.
B.
C.
D.参考答案:B6.若方程表示一个圆,则m的取值范围是(
)A. B. C. D.参考答案:C【分析】化为标准方程,根据半径必须大于零求解.【详解】表示一个圆,所以,解得故选C.【点睛】本题考查圆的一般方程与标准方程的互化,属于基础题.
7.△ABC中,,则sinA的值是(
)A. B. C. D.或参考答案:B【分析】根据正弦定理求解.【详解】由正弦定理得,选B.【点睛】本题考查正弦定理,考查基本分析求解能力,属基础题.8.已知sinα+cosα=,则sinα?cosα的值为()A. B.﹣ C.﹣ D.参考答案:B【考点】三角函数的化简求值.【分析】根据同角三角函数关系式化简即可求值.【解答】解:由sinα+cosα=,可得(sinα+cosα)2=,即1+2sinαcosα=,∴sinα?cosα=.故选B.9.若函数的图象过两点和,则(A)
(B)
(C)
(D)参考答案:A10.下列函数中,既是奇函数又是减函数的为()A.y=x+1 B.y=﹣x2 C. D.y=﹣x|x|参考答案:D【考点】3E:函数单调性的判断与证明;3K:函数奇偶性的判断.【分析】逐一分析给定四个函数的奇偶性和单调性,可得答案.【解答】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.若关于x的函数y=loga(ax+1)(a>0且a≠1)在[﹣3,﹣2]上单调递减,则实数a的取值范围为
.参考答案:0<a<【考点】复合函数的单调性.【专题】计算题;函数思想;转化思想;数学模型法;函数的性质及应用.【分析】由a>0可知内函数为增函数,再由复合函数的单调性可知外函数为定义域内的减函数,最后由真数在[﹣3,﹣2]上的最小值大于0求出a的范围,取交集得答案.【解答】解:∵a>0,∴内函数t=ax+1在[﹣3,﹣2]上单调递增,要使函数y=loga(ax+1)(a>0且a≠1)在[﹣3,﹣2]上单调递减,则外函数y=logat为定义域内的减函数,∴0<a<1,又由t=ax+1在[﹣3,﹣2]上单调递增,则最小值为﹣3a=1,由﹣3a+1>0,可得3a<1,即a<.综上,0.故答案为:0<a<.【点评】本题考查复合函数的单调性,该题解法灵活,体现了逆向思维原则,避免了繁杂的分类讨论,是中档题.12.设分别是第二象限角,则点落在第___________象限.参考答案:四【分析】由是第二象限角,判断,的符号,进而可得结果.【详解】∵是第二象限角,∴,,∴点在第四象限.故答案为四.【点睛】本题考查三角函数的符号,是基础题.解题时要认真审题,仔细解答,属于基础题.13.下列各数、
、、中最小的数是________参考答案:试题分析:,,,,所以最小的是考点:进制转换14.若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是__________.参考答案:略15.设,且满足,已知圆,直线,下列四个命题:①对满足条件的任意点和任意实数,直线和圆有公共点;②对满足条件的任意点和任意实数,直线和圆相切;③对任意实数,必存在满足条件的点,使得直线和圆相切;④对满足条件的任意点,必存在实数,使得直线和圆相切.其中正确的命题是
.(写出所有正确命题的序号)参考答案:
①③16.集合,则集合M、N的关系是
.参考答案:17.当时,函数取得最小值,则________.参考答案:【分析】利用辅助角公式可得:,其中,;可求得,代入可知,利用两角和差正弦公式即可求得结果.【详解】,其中,则,即,即本题正确结果:【点睛】本题考查利用辅助角公式、两角和差正弦公式求解三角函数值的问题,关键是能够利用辅助角公式,结合最值取得的点求得.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2](1)当a=1时,求函数f(x)的值域;(2)若f(x)≤-alnx+4恒成立,求实数a的取值范围.参考答案:(1)当a=1时,y=f(x)=ln2x-2lnx+1,令t=lnx∈[-1,2],∴y=t2-2t+1=(t-1)2,当t=1时,取得最小值0;t=-1时,取得最大值4.∴f(x)的值域为[0,4].(2)∵f(x)≤-alnx+4,∴ln2x-alnx-2a-1≤0恒成立,令t=lnx∈[-1,2],∴t2-at-2a-1≤0恒成立,设y=t2-at-2a-1,19.计算下列各式的值:(1)(2)参考答案:(1)(2)
20.设函数.(1)求函数的最小正周期;(2)求在区间上的最大值和最小值.参考答案:(1),所以函数的最小正周期为.(2)由得:,当即时,;当即时,21.(本题满分12分)某公司租赁甲、乙两种设备生产A、B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度特许经营合同标的品牌形象使用规定2篇
- 二零二四年度厦门家具买卖合同2篇
- 全新股权转让合同协议(2024版)2篇
- 二零二四年度摩托车二手买卖合同范本3篇
- 2024版城市水域垃圾打捞与运输合同2篇
- 二零二四年度智能化生产线租赁及技术服务合同2篇
- 二零二四年度研发合作与投资合同
- 2024年度物联网应用开发与许可合同
- 二零二四年广告拍摄合同服务内容详述3篇
- 2024年度股权转让合同:某科技公司5%股权的转让3篇
- 中大班社会领域《我的情绪小屋》课件
- 小企业会计准则全文
- 医院护理培训课件:《氧气筒式氧疗法》
- 人的头部结构解剖头骨课件
- 注塑模具基础知识培训课件
- 小学三年级语文质量分析课件
- 大学语文课件《蒹葭》
- lesson-12-高级英语Ships-in-the-Desert教学文案课件
- 小学四年级教案 这些事我来做-国赛一等奖
- Morisky服药依从性量表
- 人教版数学三年级上册第六单元测试题(带答案)
评论
0/150
提交评论