金属基复合材料的研究与应用_第1页
金属基复合材料的研究与应用_第2页
金属基复合材料的研究与应用_第3页
金属基复合材料的研究与应用_第4页
金属基复合材料的研究与应用_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

金属基复合材料的研究与应用

1金属合工艺的加工金属基材料是以金属或合金为基础的材料,以纤维、晶体轮廓、纤维等为增强体的材料。通过合理的设计和复合工艺,使之兼有金属良好的塑韧性和加工性能以及增强体的高比强、比刚,更好的导热性、耐磨性以及尺寸稳定性等优点。在早期的金属基复合材料研究发展中,航空、航天、武器等军事技术的需求起到了巨大的推动作用,而在可预期的将来,汽车、电子等民用工业的迅速发展必为金属基复合材料提供更加广阔的应用前景。2复合材料的分类按照基体和增强体的不同,金属基复合材料可按照如下分类。按基体材料分为:黑色金属基(钢、铁)、有色金属基(铝基、锌基、镁基、铜基、钛基、镍基)、耐热金属基、金属间化合物基复合材料等。目前铝基、镁基、钛基复合材料发展较为成熟,已逐步应用于航空航天、电子、汽车等工业领域。按增强体分为:连续纤维增强金属基复合材料;非连续增强金属基复合材料(颗粒、短纤维、晶须增强金属基复合材料);混杂增强金属复合材料、层板金属基复合材料;自生增强金属基复合材料(包括反应、定向凝固、大变形等途径自生颗粒、晶须、纤维状增强体)等。其中,自生复合材料的增强相在热力学上是稳定的,界面结合强度高,而且增强体的尺寸和体积分数可以通过工艺参数控制,是目前研究的热点。3复合材料的研究金属基复合材料既能保留原组成材料的主要特色,并通过复合效应获得原组分所不具备的性能。不同于化合物和合金材料,复合材料中的组分材料始终作为独立形态的单一材料而存在,没有明显的化学反应。金属基复合材料的性能取决于所选用基体金属或合金本身的性能,增强体的特性、含量、分布、尺寸以及界面状态等参数。通过优化组合复合材料可以获得既有金属特性,又兼具增强体的比强度、耐热、耐磨等的综合性能。相对于基体金属材料而言,金属基复合材料的性能优势主要有如下方面。3.1石墨纤维、sic在金属基体中加入适量的高强度、高模量、低密度的纤维、晶须及颗粒等增强体,可显著提高复合材料的比强度和比模量。如:碳纤维密度只有1.85g/cm3,最高强度可达7,000MPa,比铝合金强度高出10倍以上。石墨纤维的最高模量可达900GPa,比普通钢材要高4倍以上,而B纤维、SiC颗粒的密度也只有2.5~3.4g/cm3,其强度高达3,000~4,500MPa,模量350~450GPa。此类增强材料加入后作为复合材料的主要力学承载体,使其比强度、比模量数倍高于相应基体和合金材料。3.2金属基复合材料在电子封装领域的应用由于金属基复合材料中金属基体占有很高的体积分数,一般在60%以上,因此仍保持金属所特有的良好导热性和导电性,在电子封装领域,金属基复合材料制造集成电路底板和封装件可以迅速有效地降低温度梯度,提高集成电路的可靠性。另外,由于C、B、SiC纤维和颗粒等增强体普遍具有高模量和低膨胀系数,尤其是超高模量的石墨纤维具有负的膨胀系数,通过调整增强体的类型和数量,可有效地控制整体材料的线膨胀系数,避免膨胀系数不匹配导致的变形开裂和虚焊。3.3颗粒材料的应用金属基复合材料的增强体一般均为高硬度、高强度的陶瓷纤维和颗粒,尤其是纳米级别的陶瓷颗粒,在复合材料中起到类似于耐磨合金中弥散强化的第二项的作用,不仅可提高材料的强度和刚度,还可提高复合材料的硬度和耐磨性。目前SiC、TiB2增强的铝基复合材料耐磨性甚至优于铸铁,已在汽车、机械工业中初步用于发动机部件、刹车盘、活塞等重要零件。3.4复合材料高温性能测试高温环境下增强体起到主要的力学承载作用,只要增强体具备远比基体材料更高的高温强度和模量,复合材料的高温性能必将大大提高。一些高温金属纤维、陶瓷纤维和颗粒可将高温性能保持至接近熔点,如:石墨纤维增强铝基复合材料在500℃下仍有600MPa的高温强度,而基体材料强度在300℃时已降至100MPa。3.5界面结合状态金属基复合材料的断裂韧性和抗疲劳性能取决于增强体与金属基体的界面结合状态。增强体在金属基体中的分布以及金属基体、增强体本身的特性,特别是界面状态,最佳的界面结合状态既可有效地传递载荷,又能阻止裂纹的扩展,提高材料的断裂韧性。此外,选择合适的金属基体和增强体,并通过合理的制备技术和加工工艺,还可获得具有耐老化、气密性好、不吸潮等特性的金属基复合材料。4典型金属材料4.1sic和al-16复合材料增强材料铝及铝合金具有密度低、塑韧性好、导热导电性较好等优点,但其熔点低、耐磨性差的缺陷限制了其在更广范围和更高领域的应用。而铝基复合材料通过增强相的加入使之具有高比强度、高比刚度、耐磨性好、尺寸稳定性好以及易于加工等一系列优良特性,在航空航天、汽车、电子等工业领域具有十分广泛的应用前景。铝基复合材料常用的基体有Al-Mg、AlSi、Al-Cu和Al-Fe等体系。增强体主要有SiC颗粒、Al2O3颗粒、BC4颗粒、TiC颗粒等。其中采用SiC颗粒增强的铝基复合材料具有性能高、价格低、密度小等优点,是目前应用最广泛的铝基复合材料,在国外已经实现规模化生产。美国DWA公司用SiC颗粒增强6092铝基复合材料代替铝合金制造F-16战斗机的垂直尾翼,提高寿命17倍。Eurocopter公司已经大规模采用SiCp/A1复合材料用于生产直升机旋翼系统的一级关键零件上。美国的Duralcan公司研制出用SiC颗粒增强铝基复合材料制造汽车制动盘,在汽车减重的同时提高了耐磨性,而且噪音明显减小,同时该公司还用SiC颗粒增强铝基复合材料制造了汽车发动机活塞和齿轮箱等汽车零部件。此类铝基复合材料的制备工艺简单、成本较低,易于二次加工。但陶瓷颗粒与铝合金基体互不湿润,难以获得分布均匀的复合材料,且陶瓷颗粒一旦与铝合金液发生界面反应,容易生成大量的脆性界面产物,导致复合材料在拉伸变形或热处理过程中产生应力集中,使增强颗粒脱粘,这种弱界面的存在会导致复合材料的强度反而低于基体合金,这类问题还需在以后的研究中着重解决。4.2行业理想材料与单质的同类金属相比,镁的最大优点是质量更轻。但其低高温强度、低弹性模量和较差的耐磨性能限制了它的进一步应用。而镁基复合材料密度低,比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性及良好的尺寸稳定性和阻尼减振性能等,是继铝基复合材料之后又一具有竞争力的轻金属基复合材料,是宇航、兵器、汽车和电子等高新技术行业的理想材料。构成镁基复合材料的基体合金主要分为铸造和变形系列。侧重铸造性能一般选择Mg—Al、Mg—Zn、Mg—Al—Zn等体系;侧重挤压变形性能则采用Mg—Mn、Mg—Al—Zn、Mg—Zn—Zr、Mg—RE等。增强体主要有C纤维、Ti纤维、B纤维、Al2O3颗粒、SiC晶须和颗粒、B4C颗粒等。镁基复合材料选择增强体的要求与其他复合材料大致相同,都要求物理、化学相容性好,润湿性良好,载荷承受能力强,尽量避免增强体与基体合金之间的界面反应等。由于镁具有熔点比较低、化学活性高、易氧化等特点,常规的许多金属基复合材料的制备工艺都无法直接应用于镁基复合材料。采取适当的工艺措施使颗粒在基体内分布均匀,减少颗粒间的团聚,以改善材料受载时内部的应力分布,是保证镁基复合材料具有良好性能的关键因素。目前镁基复合材料的制备方法可分为外加法和原位自生法两种。外加颗粒法制备镁基复合材料的优点是工艺简单,但易造成颗粒表面的污染,基体和颗粒表面润湿困难,导致界面强度的降低。原位合成有着增强相细小、分布均匀、界面无污染、结合良好的优点,材料性能优越。4.3高温、高周疲劳性能好钛与钛合金是一种物理性能优良、化学性能稳定的材料,具有强度高、相对密度小、耐海水和海洋气氛腐蚀等许多优异的特性。但其弹性模量和耐磨性低,在600℃以上其强度和蠕变抗力急剧下降。而且通过传统的合金化方法已无法满足对高温和蠕变性能的要求。与基材相比,钛基复合材料的强度及硬度大幅度提高,且具有良好的高温强度、优异的蠕变性能、高周疲劳性能、抗蠕变性能以及优异耐腐蚀性能。在航空航天、军工、医疗和汽车等领域具备广泛的应用前景,并被誉为超高音速宇航飞行器和下一代先进航空发动机的黄金材料。钛基复合材料的增强体主要有TiC、TiB2、SiC、B4C、TiB等,此类复合材料具有各相同性、制备简单、易加工成型、成本较低等特点,近年来发展迅速。钛基复合材料比铝基复合材料有更高的耐热、耐蚀等特性,但其成本也明显提高,因此应用主要集中于航空航天、高端汽车、医疗材料等附加值高的领域,如:荷兰皇家空军将纤维增强钛基复合材料用于F-16主起落架下部的后撑杆;Toyota公司已在旗下汽车使用钛合金复合材料制造的阀门;美国Dynamet公司制造的人体骨替代材料和飞机发动机部件已商业化。此外,镍基、铜基、铁基、高温合金基等复合材料也是目前材料学界的研究热点,并已在各自领域内得到了相应的应用验证。5原位反应法与添加法的对比依据增强体的加入方式,金属基复合材料的制备方法可分为外加法和原位反应法。外加法是以粉体混合、熔融金属中添加陶瓷颗粒等物理方式达到基体和增强相相容,再通过烧结、铸造、压力加工等后续工艺制备成品,常用的外加法主要有粉末冶金法、喷射沉积法、搅拌铸造法、挤压铸造法等。原位反应法同外加法的区别在于增强体不是额外加入,而是通过添加原料与基体、添加原料之间发生反应生成,并原位析出。目前报道的原位合成法主要有:放热弥散法、气液反应合成法、自蔓延燃烧反应法和反应喷射沉积等。各类制备技术在工艺和材料性能方面各有优缺点,增强体和基材的复合技术目前仍是制约金属基复合材料应用的重要因素,也是各国材料学者的研究热点。5.1原位法制备金属基复合材料原位反应自生法分为固态自生法和液态自生法。其基本原理是:把预期反应生成增强相的两种或多种组分粉末与基体金属混合均匀,或者在熔融基体中加入能反应生成预期增强相的元素或者化合物,在一定温度下,元素之间发生放热反应,在基体的熔液中生成并析出细小、弥散的增强相。增强相的含量可以通过反应元素的加入量来控制。反应生成的增强相种类繁复,Al2O3、TiC、SiC、TiN等常用陶瓷颗粒均可通过反应制备。原位法制备金属基复合材料其增强颗粒与基体的相容性好,避免了外加增强颗粒的污染以及颗粒与基体的界面之间的化学反应问题,增强颗粒热力学稳定,高温工作时性能不易退化,此外原位反应生成的增强相细小弥散,均匀性好,性能优异。但原位法生成的相比较复杂、不易控制。5.2粉末增强体在粉体混合中的应用粉末冶金法是最早开发用于制备金属基复合材料的工艺。同常规粉末冶金相同,其工艺包括增强体和基体的粉体制备、前处理(包括烘干、清洗)、均匀混合、压坯、热成型等步骤。制备工艺中每一步都决定了复合材料界面结合状况,从而对最终材料的性能产生重要影响。在粉末冶金工艺中粉体混合的均匀性至关重要。由于粉体颗粒细小,表面带有电荷,混合时产生的增强体颗粒团聚在后续挤压过程中难以有效进行分散。为实现增强体的均匀分布,一些高能高速的工艺手段,如机械合金化工艺被引入其中,通过高能球磨实现部分或全部的固态合金化转变,同时使得增强相均匀分布在基体合金之中。粉末冶金制备复合材料的优点很突出:(1)基体和增强体基本不受限制,可选择不同的增强体种类、尺寸、数量,甚至多种增强体共同强化;(2)基体金属与强化颗粒之间不易发生反应;(3)工艺简单易操作。但其缺点也很明显:尺寸受限,复杂型腔难以制备,成本高,界面难以融合,成品致密性差等。5.3复合材料的制备喷射沉积法是将基体金属熔化后通过导液管流入喷枪,再用惰性气体将其雾化,在喷射途中与另一路由惰性气体送出的增强微细颗粒会合,共同沉积在有水冷衬底的平台上,凝固成复合材料。根据沉积坯形状和冷却速度的要求,雾化器和衬底的移动受计算机控制,保持基体的下降速率与沉积坯长大速率一致,经过雾化液流的多次往返扫描沉积,最终成形为坯件。喷射沉积法制备金属基复合材料工艺简单快速,可以避免成分偏析和界面反应,增强体的加入依靠计算机实时控制,分布均匀。但是这种方法制备的坯料中气孔和疏松多,凝固的雾化颗粒、沉积层之间不能完全冶金结合,因此后续必须进行热挤压、热轧、热压实等二次加工,对其进行有效的热致密化加工。5.4颗粒增强复合材料的制备搅拌铸造法也叫掺和铸造,是利用机械猛烈搅拌使液态的合金形成涡流,同时将增强体颗粒加入,并使颗粒均匀分布在基体中,然后使其快速凝固即可制得颗粒增强复合材料。根据铸造时加热温度可以分为全液态搅拌铸造、半固态搅拌铸造和搅熔铸造。搅拌铸造法工艺简单、成本低,对产品的尺寸、形状限制较低,可以生产大体积的复合材料,但加入的增强相体积分数一般不超过20%,且易造成增强颗粒分布的不均匀。5.5压力下浸入预制件挤压铸造法是目前制备非连续增强金属基复合材料最成功的工艺。它是通过铸造机将液态金属强行压入增强材料预制件中以制造复合材料的一种方法。挤压铸造法是将增强体制成预成型体,干燥预热后,再浇入金属熔体并将模具压下并加压,液态金属在压力下浸渗入预制件中,并在压力下凝固,制成接近最终形状和尺寸的零件。挤压铸造法具有成本低、工艺简单、增强体体积分数可调范围大、可以制备近净成型产品的优点。另外,由于基体合金在高压下浸渗和凝固,可以大大改善增强体和基体合金的结合状况,减少铸造缺陷,提高材料的致密度,从而改善复合材料的机械性能。但挤压铸造法受产品形状和尺寸的影响,对大体积零件的适应性不高,而且对模具和设备要求较高,预制件的制备技术直接影响到增强体颗粒在基体合金内的分布情况,继而对复合材料力学性能产生影响,同时挤压压力会损害预制件的完整性,使得其应用受到一定的限制。另外,金属基复合材料的制备工艺还有自蔓延高温合成法、快速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论