不对称台阶地形下墩柱流场的三维数值模拟_第1页
不对称台阶地形下墩柱流场的三维数值模拟_第2页
不对称台阶地形下墩柱流场的三维数值模拟_第3页
不对称台阶地形下墩柱流场的三维数值模拟_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

不对称台阶地形下墩柱流场的三维数值模拟

在沿海地区,风力发电的支柱基础和海上桥梁的桥墩属于柱状结构。墩柱周围流体的涡漩运动对其附近的床面局部冲刷、船舶航行等有很大的影响,危及建筑物稳定和行船安全。近年来,许多学者对波浪和墩柱之间的相互作用进行了大量细致的研究工作。HDjerid等利用LDV和PIV技术研究了高雷诺数情况下墩柱附近的紊动特性。Wei等运用PIV研究了正弦曲线圆柱后的三维尾流特性。戴光清等研究了圆柱振荡流中的斜向涡街,利用粒子成像测速仪(DPIV),对圆柱体在静水中作正弦振动产生的振荡流场进行了实测研究。田伟平和张华庆等人则通过流动显示技术,研究了墩前角区流场结构,得到了马蹄涡强度变化与流场参数的关系。孔宪雷等基于Boussinesq方程的波浪数学模型模拟了浅水区域墩柱群周围的波浪变形。李玉成和周益人等利用波浪弥散关系迭代计算得到波向与流向的夹角,并采用有限元法求解缓坡方程,研究了缓变地形和斜交定常流场共同影响下大尺度圆柱周围的波流场情况。陆夕云、Hara和Mei等通过数值求解三维Navier-Stokes方程,分析了圆柱振荡绕流的三维不稳定性及其三维流场结构。目前波浪作用下墩柱绕流结构的相关研究还比较欠缺,特别是近岸浅化后的波浪与墩柱相互作用方面的研究,但现实中墩柱大多修建在近岸区,利用Flow-3D软件,二次开发建立三维波浪数值水槽,研究浅化波浪作用下墩柱周围水流流动特性。1数学模型1.1流体密度与加速度连续性方程和动量方程中含有体积和面积分数参数,具体表达式:连续性方程:∂∂x(uAx)+∂∂y(uAy)+∂∂z(uAz)=0(1)∂∂x(uAx)+∂∂y(uAy)+∂∂z(uAz)=0(1)动量方程:⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪∂u∂t+1VF{uAx∂u∂x+vAy∂u∂y+wAz∂u∂z}=−1ρ∂p∂x+Gx+fx∂v∂t+1VF{uAx∂v∂x+vAy∂v∂y+wAz∂v∂z}=−1ρ∂p∂y+Gy+fy∂w∂t+1VF{uAx∂w∂x+vAy∂w∂y+wAz∂w∂z}=−1ρ∂p∂z+Gz+fz(2){∂u∂t+1VF{uAx∂u∂x+vAy∂u∂y+wAz∂u∂z}=-1ρ∂p∂x+Gx+fx∂v∂t+1VF{uAx∂v∂x+vAy∂v∂y+wAz∂v∂z}=-1ρ∂p∂y+Gy+fy∂w∂t+1VF{uAx∂w∂x+vAy∂w∂y+wAz∂w∂z}=-1ρ∂p∂z+Gz+fz(2)式中:ρ为流体密度;VF是可流动的体积分数;Ax、Ay、Az分别代表着x、y、z三个方向可流动的面积分数;u、v、w为对应x、y、z的速度分量;Gx、Gy、Gz为物体在x、y、z三个方向上的重力加速度;fx、fy、fz为物体在x、y、z三个方向上的粘滞力加速度。采用重整化群(RNGκ-ε)紊流模型,并运用FAVOR技术,能够较好的模拟复杂边界情况。1.2斜截面及网格划分计算工况参照波浪作用下墩柱周围局部冲刷机理实验研究,计算域取50m×1.5m×1.0m,水槽水深为0.6m。造波边界设置在水槽左侧,水槽前后两侧及顶面设为对称边界,底面设为固壁边界,右边界设置为出流边界叠加斜坡孔隙结构。斜坡孔隙结构中孔隙率为0.8,粒径为0.1m,坡比为1∶3,孔隙结构后面水域宽度为1.0m。由于波面附近物理量变化比较剧烈,所以在波面变化范围内加密网格。为了更好的研究墩柱周围水动力特性,在以墩柱为中心向迎水、背水、左侧和右侧的0.3m范围内加密网格,加密后网格长度为2cm,保证了X-Z平面上的最大网格和最小网格比值在5倍以下(如图1)。网格划分为424×40×36,总网格数为61.06万个。1.3实验结果和讨论为了验证建立的数值波浪水槽的可靠性,采用王珍的实验数据作为验证资料。其水槽试验中圆柱的直径D为16cm,高1.2m。布置如图2所示,台阶地形总长度为17.4m,高0.32m,前坡长6.4m,坡度为1/20,后坡长1.0m,坡度为1/3.2,中间平台段长10.0m,墩柱固定在中间平台段中心处。波高0.17m,周期1.7s,波速2.18m/s,波长4.36m。从图3中可以看出实测和计算的波高数据吻合较好,尤其是在斜坡中图(3(b))和斜坡顶图(3(c))处,表明利用此模型研究墩柱周围流场特性的可靠程度。图4是选取墩柱前一点实测流速和计算流速比较图(d=6.8cm)。从图4中可以看出,实测流速和计算流速吻合较好,通过对水平流速图(4(a))可知两者相差最大值为0.15m,最小值为0.01m,而比较横向流速图(4(b))得出两者相差最大值为0.12m,最小值为0.008m。从验证的结果来看,采用的数值波浪水槽是合理的,同时也表明所建立的数值波浪水槽可以用于各种波浪情况下的数值模拟。2计算和结果分析2.1模型参数选用圆柱柱径D为16cm,结合7种不同波浪情况进行数值模拟。表1是7种波况的相关参数。2.2波浪传播的引导图5给出波况B的一个周期来研究墩柱附近的表面流场(d=15cm)。从图5中可以看出在波浪从左向右传播过程中,水质点做往复振荡运动。当波浪水质点受到反射作用以较大的流速从右向左运动时,与下一周期的一个波浪相遇,水流在墩柱迎水面形成涡旋特征不明显的漩涡,并很快被反向运动的水流冲散。随后水质点与回流在墩柱背水面相遇,形成较为明显的对称漩涡,新发展的漩涡很快又被回流冲散,进而进入下一个震荡周期,而波浪在台阶地形传播的过程中墩柱的迎水面没有明显的涡动结构。2.3东墩柱的表面典型东旋回回回波的特征,c图6给出了一个周期内轴向涡量的三维等值面图(波况B)。图中高涡量成对称状聚集在墩柱的背水面,少许聚集在迎水面,表面涡量较大,在向底部延伸的过程中不断减小。在墩柱背水面形成了一对涡对旋转方向相反的涡结构。在t=3π/4和t=π时刻,墩柱的迎水面出现许多小的涡结构,这是波峰水质点与回流相互作用的结果。而在t=5π/4和t=3π/2时刻,由于波峰水质点继续向后运动,拖拽涡对结构向后延伸,随着回流的进一步影响,涡对结构逐渐萎缩。2.4ter参数和周期研究表明,近岸建筑物周围的泥沙冲刷程度和冲刷后的海底地形与建筑物的尺度有关,在对海底管线、圆柱或防波堤堤头周围泥沙的冲刷研究中发现,冲刷情况与Keulegan-Carpenter参数(KC数)有很大关系,KC数定义:KC=UmTDΚC=UmΤD式中:Um为水质点横向速度的最大值,T为波浪周期,D为管线、圆柱或防波堤堤头的直径。从表2中可以看出:波浪在台阶地形上的传播过程中,周期对KC值的影响比波高的影响要明显。在周期相同的波浪情况下,波高增大流速略微增大,KC值有所增大,如波况C、D和波况E、F(见表2)。而周期增大,不但周期自身增大并且导致流速增大。因而,周期变化对KC值的影响要比波高明显的多。随着KC值相应增大,波浪在墩柱的周围形成马蹄形漩涡,这是引起墩柱周围地形冲刷的关键因素。2.5不同相位条件下流速场分布图7给出计算参数H=0.17m、T=2.0s时,一个周期内墩柱正面、侧面和背面的水平流速分布。选取距墩柱表面0.16m(一倍墩柱直径距离)和0.32m(两倍墩柱直径距离)范围,从墩柱正面、侧面、背面研究不同相位时沿水深变化的水平流速分量。图中虚线表示线上各点流速为零,h=0.28m,U0m=2.18m/s。从图7中可以看出,在墩柱的作用下水流结构比较紊乱,水质点往复运动。迎水面的水质点在传播的过程中由于受到墩柱的阻挡,流体表面水平方向流速变化剧烈,近底区域水平方向流速沿水深均匀变化,且有负值出现;墩柱两侧的流体表面水平流速变化最为剧烈;背面区域在墩柱的掩护作用下,流体表面水平方向的流速变化不大。在墩柱的正面和侧面出现了明显的竖向环流,背水面则无明显竖向环流。3规则波作用下墩柱局部特征基于Flow-3D建立三维数值波浪水槽,模拟波浪在非对称台阶地形上的传播,通过多组次模拟计算,结果表明台阶地形上墩柱绕流属于复杂的三维流态。波浪在台阶地形上传播的过程中,墩柱迎水面没有明显的涡动结构。高涡量呈对称状聚集在墩柱的背水面,少许聚集在迎水面,墩柱的背水面形成了一对涡对旋转方向相反的涡结构。波浪在台阶地形上的传播过程中,周期对KC值的影响比波高的影响要明显。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论