2022中考数学模拟试题分类汇编3整式_第1页
2022中考数学模拟试题分类汇编3整式_第2页
2022中考数学模拟试题分类汇编3整式_第3页
2022中考数学模拟试题分类汇编3整式_第4页
2022中考数学模拟试题分类汇编3整式_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

整式考点1:整式的有关概念相关知识:1、单项式(1)数或字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。其含义有:①不含有加、减运算符号.②字母不出现在分母里.③单独的一个数或者字母也是单项式.④不含“符号”.(2)一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。注意系数与指数的区别与联系:①从位置上看;②从表示的意义上看。2、多项式(1)几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。(2)单项式和多项式统称整式。3、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律4、代数式的值用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。类型一概念题1.(2022广东湛江)多项式是次项式.【答案】二;三类型二列代数式1.(2022浙江金华,11,4分)“x与y的差”用代数式可以表示为 .【答案】x–y2.(2022浙江温州)汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).【答案】3.(2022四川乐山)体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元。则代数式500-3a-2b表示的数为。【答案】体育委员买了3个足球,2个篮球后剩余的经费4.(2022江苏盐城)某服装原价为a元,降价10%后的价格为▲元.【答案】类型三规律题1.(2022浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”().56C【答案】C2.(2022广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是▲.【答案】3.(2022内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆.(用含n的代数式表示)第1个图形第1个图形第2个图形第3个图形第4个图形第18题图【答案】或4.(2022山东聊城)如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是()A.5nB.5n-1C.6n-1D.2n2+1【答案】C类型四代数式的值1.(2022浙江杭州)当时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.【答案】-62.(2022广东株洲)当x=10,y=9时,代数式x2-y2的值是.【答案】193.(2022浙江金华)(本题6分)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.【解】由2x-1=3得,x=2,所以代数式(x-3)2+2x(3+x)-7=(2-3)2+2×2(3+2)-7=14.考点2:整式的运算相关知识:整式的运算规则1、整式的加减法:(1)去括号;(2)合并同类项。2、整式的乘法:幂的运算公式:(1)(2)(3)(都是正整数)乘法公式:(1)(2)3、整式的除法:(,都是正整数)注意:(1)单项式乘单项式的结果仍然是单项式。(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。(5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。相关试题类型一辨析题1.(2022四川南充市)计算a+(-a)的结果是()(A)2a(B)0(C)-a2(D)-2a【答案】B2.(2022浙江湖州)计算,正确的结果是A. B. C. D.【答案】D3.(2022浙江台州)计算的结果是()A.B.C.D.【答案】D4.(2022广东株洲)计算x2·4x3的结果是() A.4x3 B.4x4 C.4x5 D.4x【答案】C5.(2022江苏宿迁)计算(-a3)2的结果是()A.-a5B.a5C.a6【答案】C6.(2022重庆市潼南)计算3a2a的结果是A.6a B.6a2C.5【答案】B7.(2022湖北宜昌)下列计算正确的是().=3B.2a.a3=a6C.(3a3)2=2a6D.2a÷a【答案】D8.(2022浙江舟山)下列计算正确的是()(A) (B) (C) (D)【答案】A9.(2022广东广州)下面的计算正确的是().A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x【答案】C10.(2022江苏扬州)下列计算正确的是()A.B.(a+b)(a-2b)=a2-2b2C.(ab3)2=a2b6D.5a—2a=3【答案】C11.(2022山东日照)下列等式一定成立的是()(A)a2+a3=a5(B)(a+b)2=a2+b2(C)(2ab2)3=6a3b6(D)(x-a)(x-b)=x2-(a+b)x+【答案】D12.(2022山东泰安)下列运算正确的是()A.3a3+4a3=7a6B.3a2-4a2=-a2C.3a2·4a3=12a3D.(3a3)2÷4a3=eq\f(3,4)a2【答案】B13.(2022山东威海)下列运算正确的是()A. B.C. D.【答案】D14.(2022山东烟台)下列计算正确的是()+a3=a5B.a6÷a3=a2C.4x2-3x2=1D.(-2x2y)3=-8x6y3【答案】D15.(2022宁波市)下列计算正确的是 A.(a2)3=a6 B.a2+a2=a4C.(3a)·(2a)=6a D.【答案】A16.(2022浙江义乌)下列计算正确的是()A.B. C. D.【答案】D17.(2022浙江省嘉兴)下列计算正确的是()(A) (B) (C) (D)【答案】A18.(2022山东济宁)下列等式成立的是A.a2+a2=a5B.a2-a2=aC.a2a2=a6D.(a2)3=a6【答案】D19.(2022山东聊城)下列运算不正确的是()A.B.C.D.【答案】B20.(2022湖南益阳)下列计算正确的是 A.B.C.D.【答案】D21.(2022四川成都)下列计算正确的是(A) (B) (C) (D)【答案】D22.(2022四川宜宾)下列运算正确的是()A.3a-2a=1B.C.D.【答案】C23.(2022江西南昌)下列运算正确的是().+b=ab·a3=5C+2ab-b2=(a-b)2D.3【答案】B24.(2022湖南怀化)下列运算正确的是·a3=a3B.(ab)3=ab3+a3=a6D.(a3)2=a6【答案】D25.(2022江苏南京)下列运算正确的是A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a8【答案】C26.(2022山东临沂)下列运算中正确的是()A.(-ab)2=2a2b2B.(a+1)2=a2+1C.a6÷a2=a3D.2a3+a3=3a3【答案】D27.(2022四川绵阳)下列运算正确的是+a²=a³ B.2a+3b=5abC.(a³)2=a9 D.a3÷a2=a【答案】D28.(2022山东泰安)下列等式不成立的是()=(m-4)(m+4)+4m=m(m+4)-8m+16=(m-4)2+3m+9=(m+3)2【答案】D29.(2022江西)下列运算正确的是().+b=ab·a3=5C+2ab-b2=(a-b)2D.3【答案】B30.(2022湖北襄阳)下列运算正确的是A. B. C. D.【答案】B31.(2022湖南永州)下列运算正确是()A.B.C.D.【答案】D.32.(2022江苏盐城)下列运算正确的是A.x2+x3=x5 B.x4·x2=x6 C.x6÷x2=x3 D.(x2)3=x【答案】B33.(2022山东东营)下列运算正确的是()AB.C.D.【答案】D34.(20221江苏镇江)下列计算正确的是()A.B.C.3m+3n=6mnD.答案【D】35.(2022内蒙古乌兰察布)下列计算正确的是()A.B.C.D.【答案】A36.(2022广东湛江)下列计算正确的是ABCD【答案】A37.(2022河北)下列运算中,正确的是()A.2x-x=1 B.C. D.【答案】D38.(2022湖南衡阳)下列计算,正确的是()A.B.C.D.【答案】A39.(2022山东枣庄)如下列计算正确的是()A.a6÷a2=a3B.a2+a3=a5C.(a2)3=a6D.(a+b)2=a2+【答案】C类型二运算题1.(2022上海)计算:__________.【答案】2.(2022台湾台北)计算x2(3x+8)除以x3后,得商式和余式分别为何?A.商式为3,余式为8x2B.商式为3,余式为8C.商式为3x+8,余式为8x2D.商式为3x+8,余式为0【答案】B3.(2022台湾台北)化简(-4x+8)-3(4-5x),可得下列哪一个结果?A.-16x-10B.-16x-4C.56x-40D.14x-10【答案】D4.(2022台湾台北)下列四个多项式,哪一个是的倍式?A.B.C.D.【答案】C5.(2022台湾全区)化简之后,可得下列哪一个结果?A.2x-27B.8x-15C.12x-15D.18x-27【答案】D6.(2022台湾全区)计算多项式除以(x-2)2后,得余式为何?A.1B.3C.x-1D.3【答案】D7.(2022湖南邵阳)如果□×3ab=3a2b,则□ D.3【答案】C8.(2022江苏泰州)多项式与m2+m-2的和是m2-2m.【答案】-3m+29.(2022湖北荆州,11,4分)已知,是多项式,在计算时,小马虎同学把看成了,结果得,则=.【答案】10.(2022浙江金华)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.【解】由2x-1=3得,x=2,所以代数式(x-3)2+2x(3+x)-7=(2-3)2+2×2(3+2)-7=14.11.(2022福建福州),7分)化简:【答案】解:原式12.(2022广东茂名)化简:【答案】解:原式==.13.(2022浙江绍兴)先化简,再求值:,其中.【答案】原式当时,原式=0.14.(2022浙江温州,17,5分)化简:.【答案】解:15.(2022四川重庆,17,3分)化简:(a+b)2+a(a-2b).【答案】原式=a2+2ab+b2+a2-2ab=2a2+b216.(2022宁波市)先化简,再求值:(a+2)(a-2)+a(1-a),其中a=5【答案】解:原式=a2-4+a-a2=a-4当a=5时,原式=5-4=117.(2022江苏淮安)(a+b)2+b(a-b)【答案】(a+b)2+b(a-b)=a2+2ab+b2+ab-b2=a2+3ab.18.(2022江苏南通)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a【答案】化简原式=2a(2a-b),将a=2,19.(2022湖南衡阳)先化简,再求值.,其中.【解】原式==,当时,原式==+1=.20.(2022江苏无锡)a(a−3)+(2−a)(2+a).【答案】原式=a2−3a+4−a2=−3类型三规律题1.(2022湖南益阳)观察下列算式:①1×3-22=3-4=-1 ②2×4-32=8-9=-1③3×5-42=15-16=-1 ④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.【答案】解:⑴;⑵答案不唯一.如;⑶.2.(2022广东)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.【解】(1)64,8,15;(2),,;(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n行各数之和等于=.3.(2022四川凉山州)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。11112113311…………(a+b)1…………(a+b)2…………(a+b)3……(1)根据上面的规律,写出的展开式。(2)利用上面的规律计算:【答案】解:⑴⑵原式===1注:不用以上规律计算不给分.类型四应用题1.(2022安徽芜湖)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().A.B.C.D.【答案】D2.(2022山东枣庄)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2【答案】C考点3:因式分解相关知识:1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的方法(1)提公因式法:(2)运用公式法:①、②(3)分组分解法:(4)十字相乘法:3、因式分解的步骤:口诀:定义型——一提、二套、三分组;运算型——一不、二全、三半开(1)如果多项式的各项有公因式,那么先提取公因式。(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。相关试题类型一只提取公因式1.(2022湖南常德)分解因式:【答案】2(2022湖南永州)分解因式:=________________.【答案】3.(2022宁波市)因式分解:xy-y=【答案】y(x-1)4.(2022江苏泰州)分解因式:2a2-4a=.【答案】2a(a-2)类型二只用一次公式1.(2022浙江丽水)下列各式能用完全平方式进行分解因式的是()A.x2+1 +2x-1 +x+1 +4x+4【答案】D2.(2022浙江台州)因式分解:=【答案】(a+1)23.(2022四川宜宾)分解因式:____________________.【答案】(2x+1)(2x-1)4.(2022上海)因式分解:_______________.【答案】5.(2022山东威海)分解因式:.【答案】(x-y-4)26.(2022台湾全区)下列四个多项式,哪一个是的因式?A.2x-1B.2x-3C.x-1D.【答案】A7.(2022浙江金华)下列各式能用完全平方式进行分解因式的是()A.x2+1+2x-1C.x2+x+1+4x+4【答案】D类型三提取后用公式1.(2022山东济宁)把代数式分解因式,结果正确的是()A. B.C. D.【答案】D2.(2022湖北黄冈,2,3分)分解因式8a2【答案】2(2a+1)(2a-1)3.(2022山东东营)分解因式:=________________________________.【答案】4.(2022安徽芜湖)因式分解=.【答案】5.(2022江苏南通)分解因式:3m(2x-y)2-3mn2=【答案】3m(2x-y+n)(2x—y-n6.(2022山东临沂,15,3分)分解因式:9a-ab2=【答案】a(3+b(3-b)7.(2022四川凉山州)分解因式:。【答案】类型四十字相乘法1.(2022江苏无锡)分解因式2x2−4x+2的最终结果是()A.2x(x−2)B.2(x2−2x+1)C.2(x−1)2D.(2x−2)2【答案】C类型五两次公式类型六分组分解1.(2022广东中山)因式分解.【答案】2.(2022山东潍坊)分解因式:=___________

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论