下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求离心率的取值范围策略圆锥曲线共同的性质:圆锥曲线上的点到一个定点F和到一条定直线L(F不在定直线L上)的距离之比是一个常数e。椭圆的离心率,双曲线的离心率,抛物线的离心率。求椭圆与双曲线离心率的范围是圆锥曲线这一章的重点题型。下面从几个方面浅谈如何确定椭圆、双曲线离心率e的范围。利用曲线的范围,建立不等关系例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。解:设
因为,所以将这个方程与椭圆方程联立,消去y,可解得例2.双曲线在右支上存在与右焦点、左准线长等距离的点,求离心率e的取值范围。解:设在双曲线右支上,它到右焦点的距离等于它到左准线的距离,即=二、利用曲线的几何性质数形结合,构造不等关系例3.直线L过双曲线的右焦点,斜率k=2。若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。解:如图1,若,则L与双曲线只有一个交点;若,则L与双曲线的两交点均在右支上,
例4.已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。若△ABF2是锐角三角形,求双曲线的离心率的取值范围。解:如图2,因为△ABF2是等腰三角形,所以只要∠AF2B是锐角即可,即∠AF2F1<45°。则三、利用定义及圆锥曲线共同的性质,寻求不等关系例5.已知双曲线的左右焦点分别为、,点P在双曲线的右支上,且,求此双曲线的离心率e的取值范围。
解:因为P在右支上,所以又
得
所以
又所以例6.已知双曲线的左、右焦点分别是F1、F2,P是双曲线右支上一点,P到右准线的距离为d,若d、|PF2|、|PF1|依次成等比数列,求双曲线的离心率的取值范围。解:由题意得因为,所以,从而
,。又因为P在右支上,所以。
。。四、利用判断式确定不等关系例7.例1的解法一:解:由椭圆定义知例8.设双曲线与直线相交于不同的点A、B。求双曲线的离心率e的取值范围。解:通过以上各例可以看出,在解决“求圆锥曲线离心率的取值范围”的问题,若能根据题意建立关于a、b、c的不等式,即可转化为关于e的不等式进行求解。练习1、设椭圆(a>b>0)的两焦点为F1、F2,长轴两端点为A、B,若椭圆上存在一点Q,使∠AQB=120º,求椭圆离心率e的取值范围。(<1).2、设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,求椭圆离心率e的取值范围。()3、椭圆中心在坐标原点,焦点在x轴上,过椭圆左焦点F1的直线交椭圆于P、Q两点,且OP⊥OQ,求椭圆的离心率e的取值范围。()。4、(2000年全国高考题)已知梯形ABCD中,,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点,当时,求双曲线离心率的取值范围。2建立平面直角坐标系,设双曲线方程为,设其中是梯形的高,由定比分点公式得,把C、E两点坐标分别代入双曲线方程得,,两式整理得,从而建立函数关系式,由已知得,,解得。5、已知双曲线上存在P、Q两点关于直线对称,求双曲线离心率的取值范围。PQ中点为M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省泰州市姜堰区2024-2025学年七年级上学期期中生物试题(含答案)
- 2024年度云南省高校教师资格证之高等教育法规综合练习试卷B卷附答案
- 安徽省合肥市2024-2025学年九年级上学期期中物理模拟试卷二(含答案)
- 阜阳师范大学《战略管理》2023-2024学年第一学期期末试卷
- 阜阳师范大学《幼儿歌曲弹唱二》2022-2023学年第一学期期末试卷
- 阜阳师范大学《投资学专业导论》2021-2022学年第一学期期末试卷
- 2023年高密度聚乙烯土工膜投资申请报告
- 福建师范大学协和学院《跨境电子商务理论与实务》2021-2022学年第一学期期末试卷
- 福建师范大学《运动技能学习与控制》2022-2023学年第一学期期末试卷
- 2024年二级建造师-法规-学霸笔记
- 心理减压及放松训练
- 如何搞定你的客户-
- 宁夏特色美食文化介绍推介PPT图文课件
- 学生对学校满意度评价表
- 压缩机辅助系统试运
- 环磷酰胺原料药相关项目投资计划书
- 部编版语文四年级上册第五单元【集体备课】
- 职高新思政-第五课:推动高质量发展
- 天然气超声波脱水技术
- 机械制造课程设计-《机械制造工艺学》课程设计
- 疲劳驾驶安全教育内容
评论
0/150
提交评论