版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市县山水中学高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线(a>0,b>0)的两条渐近线与抛物线(p>0)分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=
A.1
B.
C.2
D.3参考答案:B2.将一圆的六个等分点分成两组相间的三点﹐它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星﹐如图所示的正六角星是以原点为中心﹐其中﹐分别为原点到两个顶点的向量﹒若将原点到正六角星12个顶点的向量﹐都写成为的形式﹐则的最大值为()。A.2
B.3
C.4
D.5
参考答案:D知识点:向量的表示;分类讨论.解析:解:因为若求的最大值﹐所以考虑右图中的6个顶点之向量即可﹒讨论如下﹕(1)若﹐故﹒(2)若﹐故﹒(3) 若﹐故﹒(4) 若﹐
故﹒(5)若﹐故﹒(6)若﹐故﹒因此﹐的最大值为﹒故选D﹒思路点拨:根据题意分类讨论即可.3.已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是(
)A.
B.
C.
D.参考答案:A.试题分析:双曲线的渐近线方程是,过右焦点分别作两条渐近线的平行线和,由下图图像可知,符合条件的直线的斜率的范围是.故应选A.考点:直线与圆锥曲线的关系;直线的斜率;双曲线的简单性质.4.偶函数在[0,2]上是减函数,设,则a、b、c的大小关系是(
)A.a﹥b﹥c
B.a﹥c﹥b
C.b﹥a﹥c
D.c﹥a﹥b参考答案:D5.双曲线--1的渐近线的倾斜角为
参考答案:【知识点】双曲线的简单性质.H6【答案解析】D
解析:双曲线--1的渐近线为,所以倾斜角为,故选D.【思路点拨】求出双曲线的渐近线方程,再利用斜率与倾斜角的关系,即可得出结论.6.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A,B两点,直线与抛物线C交于M,N点,若与直线的斜率的乘积为-1,则的最小值为(
)A.14 B.16 C.18 D.20参考答案:B【分析】设出直线的斜率,得到的斜率,写出直线的方程,联立直线方程和抛物线方程,根据弦长公式求得的值,进而求得最小值.【详解】抛物线的焦点坐标为,依题意可知斜率存在且不为零,设直线的斜率为,则直线的斜率为,所以,有,有,,故,同理可求得.故,当且仅当时,等号成立,故最小值为,故选B.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线和抛物线相交所得弦长公式,考查利用基本不等式求最小值,属于中档题.7.复数(i是虚数单位)在复平面上对应的点位于
(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:B8.在区间[﹣π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax﹣b2+π2有零点的概率为()A.1﹣ B.1﹣ C.1﹣ D.1﹣参考答案:B【考点】几何概型.【分析】本题考查的知识点是几何概型,我们要求出区间[﹣π,π]内随机取两个数分别记为a,b,对应平面区域的面积,再求出满足条件使得函数f(x)=x2+2ax﹣b2+π2有零点对应的平面区域的面积,然后代入几何概型公式,即可求解.【解答】解:若使函数有零点,必须△=(2a)2﹣4(﹣b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,有如图所示当a,b满足函数有零点时,坐标位于正方形内圆外的部分.于是概率为1﹣=1﹣.故选B.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.9.某班要邀请6位教师中的4位参加元旦晚会,已知教师甲和教师乙不能同时参加,则不同的邀请方法种数为(
)
A、15 B、13
C、11 D、9参考答案:D略10.执行下面的程序框图,若输出的S的值为63,则判断框中可以填入的关于i的判断条件是(
)A. B. C. D.参考答案:B【分析】根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.
二、填空题:本大题共7小题,每小题4分,共28分11.若关于的函数的最大值为,最小值为,且,则实数的值为 参考答案:112.已知二项式的展开式中各项系数和为256,则展开式中的常数项为
.(用数字作答)参考答案:28
13.已知角α的终边上一点的坐标为,则角α的最小正值为
.参考答案:考点:任意角的三角函数的定义.专题:计算题.分析:利用正切函数的定义求得三角函数的值,再求角α的最小正值.解答: 解:由题意,点在第四象限∵==∴角α的最小正值为故答案为:点评:本题重点考查三角函数的定义,考查诱导公式的运用,属于基础题.14.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为__________.参考答案:15.已知,其中是虚数单位,那么实数=
.参考答案:2试题分析:由已知,故考点:复数的运算16.设为锐角,若,则的值为
.参考答案:17.一个几何体的三视图如图所示,则该几何体的体积为
.
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)
若对x?〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。参考答案:解析:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:x(-¥,-)-(-,1)1(1,+¥)f¢(x)+0-0+f(x)-极大值ˉ极小值-所以函数f(x)的递增区间是(-¥,-)与(1,+¥)递减区间是(-,1)(2)f(x)=x3-x2-2x+c,x?〔-1,2〕,当x=-时,f(x)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值。要使f(x)<c2(x?〔-1,2〕)恒成立,只需c2>f(2)=2+c
解得c<-1或c>219.(本小题满分12分)已知向量,,(其中),函数,若相邻两对称轴间的距离为.(I)求的值,并求的最大值及相应x的集合;(Ⅱ)在中,a、b、c分别是A、B、C所对的边,的面积,b=4,,求边a的长.参考答案:(I)
………3分由题意可得,∴,∴
……………4分当时,的最大值为2,此时x的集合是
……………6分(Ⅱ)
…8分
…………10分由余弦定理得:a2=16+25-2×4×5cos=21
……………12分20.(14分)已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,不等式恒成立,求实数的取值范围.(Ⅲ)求证:(,e是自然对数的底数).参考答案:21.如图,四边形ABCD是圆内接四边形,BA、CD的延长线交于点P,且AB=AD,BP=2BC(Ⅰ)求证:PD=2AB;(Ⅱ)当BC=2,PC=5时.求AB的长.参考答案:【考点】与圆有关的比例线段.【专题】选作题;方程思想;综合法;推理和证明.【分析】(Ⅰ)证明:△APD∽△CPB,利用AB=AD,BP=2BC,证明PD=2AB;(Ⅱ)利用割线定理求AB的长.【解答】(Ⅰ)证明:∵四边形ABCD是圆内接四边形,∴∠PAD=∠PCB,∴∠APD=∠CPB,∴△APD∽△CPB,∴=,∵BP=2BC∴PD=2AD,∴AB=AD,∴PD=2AB;(Ⅱ)解:由题意,BP=2BC=4,设AB=t,由割线定理得PD?PC=PA?PB,∴2t×5=(4﹣t)×4∴t=,即AB=.【点评】本题考查三角形相似的判断,考查割线定理,考查学生分析解决问题的能力,属于中档题.22.(本小题13分)已知函数,(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)在中,三内角的对边分别为,已知,成等差数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 范本十一技术转让与许可使用合同2024年2篇
- 2024年度软件许可使用合同:甲方许可乙方使用其软件的具体条款
- 零星维修施工合同
- 2024年度房屋买卖合同模板2篇
- 2024年度甲乙双方合作开展文化活动合同
- 2024年度装修工程款项支付方式合同
- 二零二四年度任城区人才公寓绿化与环境卫生合同
- 2024年度广告代理合同标的及代理范围3篇
- 2024年度股权转让与回购协议2篇
- 2024年度建筑工程质量风险评估与控制协议书2篇
- 八年级历史上册 第一学期期末考试卷(人教福建版)
- 小学一年级上学期思维训练数学试题(答案)
- 听风八百遍才知是人间
- 2023年广西水利电力职业技术学院教师招聘考试笔试题库及答案
- 电梯动火施工方案
- 世界各国国家代号、区号、时差
- 工程水文学题库及题解(全)
- 南京鼓楼区某校2023-2024六年级上册英语期中试卷及答案
- 某标准件厂冷镦车间低压配电系统及车间变电所设计
- (医学课件)SOAP的规范书写及练习
- 医学影像检查技术学教案
评论
0/150
提交评论