版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连市第四十八高级中学高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若对任意,且,不等式恒成立,则实数a的取值范围是A. B. C. D.参考答案:D【分析】对不等式进行化简,转化为a(x1+x2)﹣1>0恒成立,再将不等式变形,得到a>恒成立,从而将恒成立问题转变成求的最大值,即可求出a的取值范围.【详解】不妨设x2>x1≥2,不等式===a(x1+x2)﹣1,∵对任意x1,x2∈[2,+∞),且x1≠x2,不等式>0恒成立,∴x2>x1≥2时,a(x1+x2)﹣1>0,即a>恒成立∵x2>x1≥2∴<∴a≥,即a的取值范围为[,+∞);故选:D.【点睛】本题考查了函数恒成立求参数取值范围,也是常考题型,本题以“任性函数”的形式考查函数恒成立求参数取值范围,一种方法,可以采用参变分离的方法,将恒成立转化为求函数的最大值和最小值,二种方法,将不等式整理为的形式,即求,或是的形式,即求,求参数取值.2.函数的图象关于下列那一个对称?()A.关于轴对称
B.关于对称
C.关于原点对称
D.关于直线参考答案:C。3.以直线x±2y=0为渐近线,且截直线x﹣y﹣3=0所得弦长为的双曲线方程为()A.﹣=1 B.﹣=1 C.y2﹣=1 D.﹣y2=1参考答案:D【考点】KB:双曲线的标准方程.【分析】设双曲线方程为x2﹣4y2=λ,联立方程组,得3x2﹣24x+(36+λ)=0,由椭圆弦长公式求出λ=4,由此能求出双曲线方程.【解答】解:∵双曲线以直线x±2y=0为渐近线,∴设双曲线方程为x2﹣4y2=λ,联立方程组,消去y,得3x2﹣24x+(36+λ)=0,设直线被双曲线截得的弦为AB,且A(x1,y1),B(x2,y2),则,△=242﹣432﹣12λ>0,∴|AB|=?==,解得λ=4,∴所求双曲线方程是.故选:D.4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”若圆周率约为3,估算出堆放的米约有()立方尺A.
B.
C.
D.参考答案:B5.已知直线l1:(k﹣1)x+y+2=0和直线l2:8x+(k+1)y+k﹣1=0平行,则k的值是()A.3 B.﹣3 C.3或﹣3 D.或﹣参考答案:A【考点】直线的一般式方程与直线的平行关系.【分析】由平行可得(k﹣1)(k+1)﹣8=0,解之,验证排除直线重合的情形即可.【解答】解:由题意可得(k﹣1)(k+1)﹣8=0,解得k=3或k=﹣3,经验证当k=﹣3时,两直线重合,应舍去,故选:A.6.已知,求(
)
参考答案:B7.函数的定义域是
(
)
A.B.
C.
D.参考答案:A略8.在四边形ABCD中,如果,,那么四边形ABCD的形状是(
)A.矩形 B.菱形 C.正方形 D.直角梯形参考答案:A【分析】由可判断出四边形ABCD为平行四边形,由可得出,由此判断出四边形ABCD的形状.【详解】,所以,四边形ABCD为平行四边形,由可得出,因此,平行四边形ABCD为矩形,故选:A.【点睛】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.9.函数的部分图象可能是(
). A. B.C. D. 参考答案:B∵,∴,∴函数的定义域为,又,∴函数为偶函数,且图象关于轴对称,可排除、.又∵当时,,可排除.综上,故选.10.已知集合A={x|y=x∈Z},B={y|y=2x-1,x∈A},则A∩B=_____参考答案:略二、填空题:本大题共7小题,每小题4分,共28分11.设函数且,若,则的值等于
参考答案:1812.已知直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,则m=,l1与l2之间的距离为.参考答案:4,.【考点】两条平行直线间的距离.【分析】由两直线平行的条件可得=≠,解方程可得m的值;化简l2,再由两平行线的距离公式即可得到所求值.【解答】解:直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,当m=0,两直线显然不平行;可得=≠,解得m=4,即有直线l1:x+2y﹣4=0,l2:2x+4y﹣4=0,即x+2y﹣2=0,可得l1与l2之间的距离d==.故答案为:4,.13.在中,如果∶∶=5∶6∶8,那么此三角形最大角的余弦值是
.
参考答案:14.给出下列命题:①存在实数,使;②若是第一象限角,且,则;③函数是偶函数;④函数的图象向左平移个单位,得到函数的图象.其中正确命题的序号是____________.(把正确命题的序号都填上)参考答案:③解析:对于①,;对于②,反例为,虽然,但是
对于③,
15.函数的定义域是
.参考答案:16.设向量,,则,的夹角等于
.参考答案:试题分析:由题意得,,所以,所以向量,的夹角等于.考点:平面向量的夹角的计算.17.若幂函数f(x)=xa(a∈R)的图象过点(2,),则a的值是,函数f(x)的递增区间是
.参考答案:,[0,+∞)
【考点】幂函数的概念、解析式、定义域、值域.【分析】利用待定系数法求出a的值,写出函数f(x)的解析式,再得出f(x)的递增区间.【解答】解:幂函数f(x)=xa(a∈R)的图象过点(2,),则2a=,解得a=;所以函数f(x)==,所以f(x)的递增区间是[0,+∞).故答案为:,[0,+∞).【点评】本题考查了幂函数的定义与应用问题,是基础题目.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18..已知数列{an}中,.(1)求证:是等比数列,并求数列{an}的通项公式;(2)已知数列{bn},满足.(i)求数列{bn}的前n项和Tn;(ii)若不等式对一切恒成立,求的取值范围.参考答案:(1)答案见解析;(2);.【分析】(1)由题意结合等比数列的定义证明数列是等比数列,然后求解其通项公式即可;(2)(i)首先确定数列的通项公式,然后求解其前n项和即可;(ii)结合恒成立的条件分类讨论n为奇数和n为偶数两种情况确定的取值范围即可.【详解】,,,,,,是以3为首项,3公比的等比数列,..解由得,,,两式相减,得:,.由得,令,则是递增数列,若n为偶数时,恒成立,又,,若n为奇数时,恒成立,,,.综上,的取值范围是19.是否存在实数a,使得函数上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.参考答案:略20.已知函数f(x)=2|x﹣2|+ax(x∈R). (1)当a=1时,求f(x)的最小值; (2)当f(x)有最小值时,求a的取值范围; (3)若函数h(x)=f(sinx)﹣2存在零点,求a的取值范围. 参考答案:【考点】分段函数的应用;函数的最值及其几何意义;函数零点的判定定理. 【专题】分类讨论;转化思想;转化法;函数的性质及应用. 【分析】(1)当a=1时,求出函数f(x)的表达式,判断函数的单调性即可求f(x)的最小值; (2)当f(x)有最小值时,利用分段函数的性质建立不等式关系即可求a的取值范围; (3)利用换元法,结合函数与方程之间的关系进行转化,求a的取值范围. 【解答】解:(1)当a=1时,f(x)=2|x﹣2|+x=…(2分) 所以,f(x)在(﹣∞,2)递减,在[2,+∞)递增, 故最小值为f(2)=2;…(4分) (2)f(x)=,…(6分) 要使函数f(x)有最小值,需, ∴﹣2≤a≤2,…(8分) 故a的取值范围为[﹣2,2].…(9分) (3)∵sinx∈[﹣1,1],∴f(sinx)=(a﹣2)sinx+4, “h(x)=f(sinx)﹣2=(a﹣2)sinx+2存在零点”等价于“方程(a﹣2)sinx+2=0有解”, 亦即有解, ∴,…(11分) 解得a≤0或a≥4,…(13分) ∴a的取值范围为(﹣∞,0]∪[4,+∞)…(14分) 【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键. 21.在△ABC中,角A,B,C所对的边分别为a,b,c,已知满足.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积的取值范围.参考答案:(Ⅰ);(Ⅱ)【分析】(Ⅰ)利用正弦定理,两角和的正弦函数公式化简已知等式可求得,结合范围,可求的值;(Ⅱ)根据正弦定理将表示成的形式,根据三角形的面积公式可求,结合范围,利用正弦函数的图象和性质可求得面积的取值范围.【详解】(Ⅰ)由正弦定理得:
(Ⅱ)由正弦定理得:
同理:
的面积的取值范围为:【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级下册数学教学工作计划进度安排
- 《研究生单招复习题》课件
- 《园林及植物配置》课件
- 艺术场馆经济效益评估-洞察分析
- 眼眶减压术研究-洞察分析
- 塑料原料供应风险应对-洞察分析
- 语义相似度度量模型-洞察分析
- 虚拟现实手术模拟-第2篇-洞察分析
- 隐私保护增强学习-洞察分析
- 虚拟环境下的保险理赔调查-洞察分析
- 2025年1月广西2025届高三调研考试语文试卷(含答案详解)
- 劳动合同范本(2025年)
- 辽宁2025年高中学业水平合格性考试物理试卷试题(含答案详解)
- 工厂食堂安全卫生管理方案
- 中药硬膏热贴敷治疗
- 2024年人教版三年级上数学教学计划和进度安排
- 《电能计量知识介绍》课件
- 2023-2024学年山东省潍坊市高新区六年级(上)期末数学试卷(含答案)
- 弹性模量自动生成记录
- 2024年教师师德师风工作计划(2篇)
- 物流行业服务质量保障制度
评论
0/150
提交评论