




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
理论物理第十章动量定理第1页,课件共84页,创作于2023年2月
几个有意义的实际问题地面拔河与太空拔河,谁胜谁负?第2页,课件共84页,创作于2023年2月
几个有意义的实际问题?偏心转子电动机工作时为什么会左右运动;这种运动有什么规律;会不会上下跳动;利弊得失。第3页,课件共84页,创作于2023年2月?
几个有意义的实际问题蹲在磅秤上的人站起来时磅秤指示数会不会发生的变化第4页,课件共84页,创作于2023年2月?
几个有意义的实际问题台式风扇放置在光滑的台面上的台式风扇工作时,会发生什么现象第5页,课件共84页,创作于2023年2月?
几个有意义的实际问题水水池隔板光滑台面抽去隔板后将会发生什么现象第6页,课件共84页,创作于2023年2月§10-1质点系动量定理
质点的动量——质点的质量与质点速度的乘积,称为质点的动量动量具有矢量的全部特征,所以动量是矢量,而且是定位矢量。
质点的动量定理——质点的动量对时间的一阶导数,等于作用在质点上的力第7页,课件共84页,创作于2023年2月§10-1质点系动量定理质点系的动量与动量系质点系运动时,系统中的所有质点在每一瞬时都具有各自的动量矢。质点系中所有质点动量矢的集合,称为动量系。动量系的矢量和,称为质点系的动量,又称为动量系的主矢量,简称为动量主矢。第8页,课件共84页,创作于2023年2月§10-1质点系动量定理动量系的矢量和,称为质点系的动量,又称为动量系的主矢量,简称为动量主矢。根据质点系质心的位矢公式第9页,课件共84页,创作于2023年2月§10-1质点系动量定理质点系动量定理对于质点对于质点系第10页,课件共84页,创作于2023年2月§10-1质点系动量定理对于质点系——内力主矢——外力主矢第11页,课件共84页,创作于2023年2月§10-1质点系动量定理对于质点系
质点系的动量主矢对时间的一阶导数,等于作用在这一质点系上的外力主矢质点系动量定理第12页,课件共84页,创作于2023年2月§10-2质心运动定理根据质点系质心的位矢公式第13页,课件共84页,创作于2023年2月§10-2质心运动定理质点系的总质量与质点系质心加速度乘积,等于作用在这一质点系上外力的主矢.质心运动定理揭示了动量定理的实质:外力主矢仅仅确定了质点系质心运动状态的变化。质心运动定理第14页,课件共84页,创作于2023年2月§10-2质心运动定理
对于质点:牛顿第二定律,描述单个质点运动与力之间的关系
对于质点系:质心运动定理,描述质点系整体运动与力之间的关系第15页,课件共84页,创作于2023年2月§10-3质点系动量定理的投影与守恒形式质点系动量定理的投影形式质心运动定理的投影形式第16页,课件共84页,创作于2023年2月§10-3质点系动量定理的投影与守恒形式质点系动量守恒p=C1质心运动守恒vC=C2C1、C2
均为常矢量,由初始条件确定。第17页,课件共84页,创作于2023年2月§10-3质点系动量定理的投影与守恒形式质点系动量守恒的特殊情形质心运动守恒的特殊情形px=C1,或py=C1,或pz=C1vCx=C2,或vCx=C2,或vCz=C2C1、C2
均为标量,由初始条件确定。第18页,课件共84页,创作于2023年2月§10-3质点系动量定理的投影与守恒形式对于刚体或刚体系统,其质心容易确定,应用动量定理时,主要采用质心运动形式-质心运动定理。或者变换为mi-第i个刚体的质量;m-刚体系统的总质量;vCi-第i个刚体质心的速度;vC-系统质心的速度;aCi-第i个刚体质心的加速度;aC-系统质心的加速度第19页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
定常质量流
定常质量流——质量流中的质点流动过程中,在每一位置点都具有相同速度。
定常质量流特点
1、质量流是不可压缩流动;2、非粘性——忽略流层之间以及质量流与管壁之间的摩擦力。第20页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
定常质量流
定常质量流——质量流中的质点流动过程中,在每一位置点处都具有相同速度。根据上述定义和特点,有第21页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
定常质量流连续流方程表明,流入边界和流出边界的质量流量相等。-质量流的密度;A1、A2-质量流入口和出口处的横截面积;v1、v2-质量流在入口和出口处的速度qm-质量流量。第22页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
动量定理的定常流形式考察1-2小段质量流,其受力:
F1、F2-入口和出口处横截面所受相邻质量流的压力;W-质量流的重力;
FN-管壁约束力合力。考察1-2小段质量流,
v1、v2-入口和出口处质量流的速度;
1-2
:t瞬时质量流所在位置;1´-2´
:t+
t瞬时质量流所在位置;第23页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
动量定理的定常流形式t+
t瞬时质量流的动量:t瞬时质量流的动量:
t时间间隔内质量流的动量改变量考察1-2小段质量流,第24页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
动量定理的定常流形式第25页,课件共84页,创作于2023年2月
质点系动量定理应用于开放质点系-定常质量流
动量定理的定常流形式同除以
t,并取极限由质点系动量定理,得到动量定理的定常质量流形式还可以写成投影的形式。第26页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题1
椭圆规机构中,OC=AC=CB=l;滑块A和B的质量均为m,曲柄OC和连杆AB的质量忽略不计;曲柄以等角速度
绕O轴旋转;图示位置时,角度
为任意值。求:图示位置时,系统的总动量。AOBC
第27页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题1
解:将滑块A和B看作为两个质点,整个系统即为两个质点所组成的质点系。求这一质点系的动量可以用两种方法:
第一种方法:先计算各个质点的动量,再求其矢量和。
第二种方法:先确定系统的质心,以及质心的速度,然后计算系统的动量。AOBC
第28页,课件共84页,创作于2023年2月AOBC
质点系动量定理应用于简单的刚体系统例题1解:
第一种方法:先计算各个质点的动量,再求其矢量和。
建立Oxy坐标系。在角度
为任意值的情形下xyvBvA第29页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题1
解:
建立Oxy坐标系。在角度
为任意值的情形下AOBC
xyvBvA第30页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题1
解:AOBC
xyvBvA第31页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题1
解:第二种方法:先确定系统的质心,以及质心的速度,然后计算系统的动量。
质点系的质心在C处,其速度矢量垂直于OC,数值为vC=l
vC=l
(-sin
i+cos
j)系统的总质量mC=mA+mB=2m系统的总动量AOBC
xyvBvAlvC90o第32页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题2质量为m1,半径为R的均质圆盘与质量为m2,长度为l的均质杆铰接于A点。图示瞬时圆盘质心的速度为vA,杆的角速度为
。求:系统的动量:第33页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题2解:计算系统的动量vci—系统中各个刚体质心的速度vA—圆盘质心的速度vC
—杆质心的速度为第34页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题2系统的动量:第35页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题3
Cbxy已知:均质曲柄长r,重P,匀;其余部件重心在C,尺寸b,重W;活塞上恒力Q,略摩擦。求:(1)系统动量(2)作用于O处的最大水平力第36页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题3解:(1)受力分析、运动分析如图。
CbxyQXOYOvAvCv1PW(2)设系统质心为P第37页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题3第38页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统
例题4vNRxQGu重Q水兵,沿重G小船以相对速度u在船板上走动。设水阻力R为常量,初瞬时人船皆静止。求:用时间t表示小船的速度解:受力、运动分析如图。建系。第39页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题5在静止的船上,一人重P,自船头走至船尾,船长l,重Q,略阻力。求:船的位移NxPQymn解:系统受力第40页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题5设m,n为初始时人及船的x坐标,船位移为s,则:第41页,课件共84页,创作于2023年2月xyM1M2GPaOC
质点系动量定理应用于简单的刚体系统例题6已知:M1重G,M2重P以 加速度a下降。求:滑轮O处约束反力。(略摩擦及二滑轮质量)解:1、系统为研究对象2、受力分析,建立坐标系,运动分析。V2V1V2=2V1XOYO第42页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统xyM1M2GPaOCV2V1V2=2V1解:3、列方程例题6XOYO第43页,课件共84页,创作于2023年2月作业:10-2,10-3,10-6第44页,课件共84页,创作于2023年2月
结论与讨论第10章
质点系动量定理第45页,课件共84页,创作于2023年2月
结论与讨论
有关动量的几个定理的小结质点系的动量定理
建立了动量与外力主矢之间的关系,涉及力、速度和时间的动力学问题。第46页,课件共84页,创作于2023年2月
结论与讨论
有关动量的几个定理的小结质点系动量守恒定理
可以用于求解系统中的速度,以及与速度有关的量。p=C1px=C1,或py=C1,或px=C1第47页,课件共84页,创作于2023年2月
结论与讨论
有关动量的几个定理的小结质心运动定理质心运动定理建立了质点系质心运动与系统所受外力主矢之间的关系。质心运动定理可以用于求解作用在系统上的未知外力,特别是约束力。质心的运动与内力无关,内力不能改变系统整体的运动状态(系统质心的运动),但是,内力可以改变系统内各个质点的运动状态。第48页,课件共84页,创作于2023年2月
结论与讨论
有关动量的几个定理的小结质心运动守恒定理
如果作用在质点系上的外力主矢等于0,则系统的质心作惯性运动:若初始为静止状态,则系统的质心位置始终保持不变。vC=C2vCx=C2,或
vCx=C2,或
vCx=C2
第49页,课件共84页,创作于2023年2月
结论与讨论
牛顿第二定律与动量守恒牛顿第二定律动量定理动量守恒定理
工程力学中的动量定理和动量守恒定理比物理学中的相应的定理更加具有一般性,应用的领域更加广泛,主要研究以地球为惯性参考系的宏观动力学问题,特别是非自由质点系的动力学问题。这些问题的一般运动中的动量往往是不守恒的。第50页,课件共84页,创作于2023年2月
结论与讨论
动量定理微分形式和积分形式动量定理的微分形式动量定理的积分形式S-质点系统的冲量
质点系统动量在一段时间内的改变量等于系统中所有质点冲量的矢量和第51页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题7
电动机的外壳和定子的总质量为m1,质心C1与转子转轴O1重合;转子质量为m2,质心O2与转轴不重合,偏心距O1O2=e。若转子以等角速度
旋转求:电动机底座所受的约束力。第52页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题7解:1、选择包括外、壳、定子、转子的电动机作为刚体系统2、系统所受的外力定子所受重力m1g;转子所受重力m2g;底座所受约束力Fx、Fy、M。m1gm2gFxFyM第53页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题7
3、各刚体质心的加速度aC1=
aO1=0;aC2=
aO1=e
2(向心加速度)m1gm2gFxFyM4、应用质心运动定理第54页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题7
4、应用质心运动定理第55页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题75、关于计算结果的分析
动约束力与轴承动反力
约束力何时取最大值与最小值
周期性反复变化的约束力对结构的破坏作用第56页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题8已知:电机定子与基础的质量为M,转子的质量为m,偏心距为e,以等角速度
转动,略摩擦。求:1、电机浮搁在地面上时,其外壳运动。2、在铅垂方向地基作用在电机上的约束力。b第57页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题8解:1、系统受力分析,建系。PX=常数外壳与定子连为一体,定子质心运动。bxy设初始时(系统质心P在O上方)第58页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题8bxy解:若C右移,则O左移,设位移为S。第59页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题8bxy解:2、求y方向约束反力电机将跳起时,第60页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题9
BADD已知:均质杆AB质量为m,三棱柱质量为M,杆搁在块上,与斜面垂直,初始静止。略摩擦。求:三棱柱D与杆AB的加速度第61页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统
BADD例题9解:整体受力,运动分析如图NDMgmgNBaAaDNBmgNAaAMgNDaDN'Axyxy(a)(b)第62页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题9NBmgNAaAMgNDaDN'Axyxy(a)(b)解:应用质心运动定理1、杆AB2、三棱柱D3、补充方程
arae=aDaa=aAA杆AB上A为动点,柱D为动系第63页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题9
arae=aDaa=aAA方向:大小:沿AB沿斜面???第64页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题10半径为r,重为P1的半圆柱体放在光滑的水平面上,一重为P2的小球从圆柱顶点无初速地滑下,如图(a)所示。求:(1)列写系统运动微 分方程;(2)求小球离开圆柱体前 的轨迹第65页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题10解:(1)研究半圆柱体与小球组成的系统。系统动量在水平方向守恒第66页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题10第67页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统
例题10再以小球为分析对象,其受力图与加速度分析图如图(b)所示。小球的运动微分方程第68页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题10系统的运动微分方程:第69页,课件共84页,创作于2023年2月(2)系统的初始动量为零,由系统在水平方向动量守恒得出
质点系动量定理应用于简单的刚体系统例题10所以小球的轨迹方程为或第70页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题11电动机的外壳和定子的总质量为m1,质心C1与转子转轴O1重合;转子质量为m2,质心O2与转轴不重合,偏心距O1O2=e。若转子以等角速度
旋转,底座不固定,初始条件为:=0,vO2x=0,vO2y=e2。求:1、电动机跳起的条件;2、外壳在水平方向的运动规律。O1O2e第71页,课件共84页,创作于2023年2月
质点系动量定理应用于简单的刚体系统例题11解:1、选择包括外、壳、定子、转子的电动机作为刚体系统,分析系统的受力:定子所受重力m1g;转子所受重力m2g;底座所受约束力Fy,M。2、分析运动,确定各个刚体质心的加速度定系Oxy,动系O1x1y1,外壳作平移,其质心加速度为aO1转子作平面运动,其质心加速度由两部分组成:ae=aO1(水平方向);ar=aO2=e
2(向心加速度)。m1gm2gFy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考文科一卷试题及答案
- 交建投笔试题目及答案
- 十四单元测试题及答案
- 深度分析美容行业发展趋势的考试知识试题及答案
- 药物治疗实验设计试题及答案
- 从容应对语文考试小学六年级试题及答案
- 探索美容师考试的学科整合与公务员省考试题及答案
- 备考小学六年级语文试题及答案
- 教培行业教学教研
- 二手车评估中常见误区与应对策略试题及答案
- 青少年心理咨询的特殊挑战试题及答案
- 2025年中国人寿招聘笔试笔试参考题库附带答案详解
- 2024-2025学年高中化学上学期第十四周 化学反应速率教学实录
- 2025年初中地理中考押题卷(含解析)
- 火锅店创业计划书:营销策略
- 交通大数据分析-深度研究
- 基础护理学试题及标准答案
- DB11-T 1754-2024 老年人能力综合评估规范
- 招聘团队管理
- 【课件】用坐标描述简单几何图形+课件人教版七年级数学下册
- 电商运营岗位聘用合同样本
评论
0/150
提交评论