




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省忻州市富村中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则“”是“a、b、c成等差数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:C【详解】由得b-a=c-b,所以成等差数列;反之,因为成等差数列,所以b-a=c-b,即,故“”是“成等差数列”的充要条件,故选C.2.如果函数f(x)=在区间(-∞,4﹞上单调递减,则实数a的范围是(
)Aa≥8
Ba≤8
Ca≥4
Da≥-4参考答案:A略3.在空间中,下列命题正确的是()A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行C.垂直于同一直线的两条直线平行D.平行于同一平面的两个平面平行参考答案:D【考点】命题的真假判断与应用.【分析】在A中,两条直线平行、相交或异面;在B中,两个平面平行或相交;在C中,两条直线平行、相交或异面;在D中,由平面与平面平行的性质定理得行于同一平面的两个平面平行.【解答】解:平行于同一平面的两条直线平行、相交或异面,故A错误;平行于同一直线的两个平面平行或相交,故B错误;垂直于同一直线的两条直线平行、相交或异面,故C错误;由平面与平面平行的性质定理得行于同一平面的两个平面平行,故D正确.故选:D.4.一个四棱锥的底面为长方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4参考答案:B【考点】由三视图求面积、体积.【专题】计算题;方程思想;综合法;立体几何.【分析】几何体是四棱锥,再根据三视图判断四棱锥的高与底面长方形的长与宽,把数据代入棱锥的体积计算可得答案.【解答】解:由三视图知几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,高为3,四棱锥的底面是长方形,长方形的长、宽分别为1、2,∴几何体的体积V=×1×2×3=2.故选:B.【点评】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.5.的展开式中的系数是(
)A.58 B.62 C.52 D.42参考答案:D【分析】由题意利用二项展开式的通项公式,赋值即可求出。【详解】的展开式中的系数是.选D.【点睛】本题主要考查二项式定理的展开式以及赋值法求展开式特定项的系数。6.设集合则
(
)A.
B.
C.
D.参考答案:A7.“a=﹣2”是“直线(a+2)x+3ay+1=0与直线(a﹣2)x+(a+2)y﹣3=0相互垂直”的()条件.A.充要 B.充分非必要C.必要非充分 D.既非充分也非必要参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】对a分类讨论,利用直线相互垂直的充要条件即可得出.【解答】解:a=﹣2时,两条直线分别化为:﹣6y+1=0,﹣4x﹣3=0,此时两条直线相互垂直,满足条件;a=0时,两条直线分别化为:2x+1=0,﹣2x+2y﹣3=0,此时两条直线不垂直,舍去;a≠﹣2或0时,由“直线(a+2)x+3ay+1=0与直线(a﹣2)x+(a+2)y﹣3=0相互垂直”,可得:﹣×=﹣1,解得a=.∴“a=﹣2”是“直线(a+2)x+3ay+1=0与直线(a﹣2)x+(a+2)y﹣3=0相互垂直”的充分不必要条件.故选:B.8.在数列2,9,23,44,72,…中,紧接着72后面的那一项应该是(
)
A.82
B.107
C.100
D.83参考答案:B9.等差数列的前项和,若,则(
)
参考答案:C10.若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形参考答案:C【考点】余弦定理的应用;正弦定理的应用.【分析】先根据正弦定理及题设,推断a:b:c=5:11:13,再通过余弦定理求得cosC的值小于零,推断C为钝角.【解答】解:∵根据正弦定理,又sinA:sinB:sinC=5:11:13∴a:b:c=5:11:13,设a=5t,b=11t,c=13t(t≠0)∵c2=a2+b2﹣2abcosC∴cosC===﹣<0∴角C为钝角.故选C二、填空题:本大题共7小题,每小题4分,共28分11.△ABC中,角A、B、C的对边分别为a、b、c,若A=60°,B=45°,c=20cm,则△ABC的AB边上的高hc=. 参考答案:【考点】解三角形. 【专题】计算题;方程思想;解三角形. 【分析】由A与C的度数求出B的度数,再作出AB边上的高,利用两个特殊直角三角形求高. 【解答】解:由已知得到∠C=75°,作出AB边上的高CD,设高为x,则BD=x,AD=x,则x+x=20解得x=; 故答案为:. 【点评】此题考查了特殊角的三角函数以及利用方程思想解三角形. 12.在矩形ABCD中,平面ABCD,PA=1,则PC与平面ABCD所成的角的大小为
.参考答案:∵PA⊥平面ABCD∴PC与平面ABCD所成角为∠PCA,∵矩形ABCD中,AB=1,BC,∴AC,∵PA=1,∴tan∠PCA,∴∠PCA=.故答案为:
13.在直角坐标系中,设,沿轴把坐标平面折成的二面角后,的长为
▲
.参考答案:14.如图所示,输出的值为
.参考答案:15.若函数的图象在点处的切线l与函数的图象也相切,则满足条件的切点P的个数为______.参考答案:2【分析】求得函数,的导数,可得切线的斜率和方程,由两直线重合的条件,解方程可得,即可得到所求的个数.【详解】解:函数的导数为,可得点,处的切线斜率为,切线方程为,函数的导数为,设与相切的切点为,可得切线斜率为,切线方程为,由题意可得,,可得,解得或.则满足条件的的个数为2,故答案为:2.【点睛】本题考查导数的运用:求切线方程,考查直线方程的运用,以及化简运算能力,属于中档题.16.在的展开式中,的系数是
.
参考答案:
解析:,令17.已知,,则P(AB)=.参考答案:【考点】CM:条件概率与独立事件.【分析】根据条件概率公式计算.【解答】解:∵P(B|A)=,∴P(AB)=P(A)?P(B|A)=.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.若关于x的不等式﹣x2+2x>mx在(0,2)上恒成立,求实数m的取值范围.参考答案:【考点】函数恒成立问题.【分析】由参数分离可得m<2﹣x在(0,2)恒成立,运用一次函数的单调性,结合恒成立思想可得m的范围.【解答】解:关于x的不等式﹣x2+2x>mx在(0,2)上恒成立,即为m<2﹣x在(0,2)恒成立,由y=2﹣x在(0,2)递减,可得2﹣x>1,则m≤1.即有m的取值范围是(﹣∞,1].19.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.
参考答案:(1)用有序实数对(x,y)表示甲在x号车站下车,乙在y号车站下车,则甲下车的站号为2,3,4共3种结果,乙下车的站号也是2,3,4共3种结果.甲、乙两人下车的所有可能的结果有9种.分别为:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4).(2)设甲、乙两人同时在第3号车站下车的事件为A,则P(A)=.(3)设甲、乙两人在不同的地铁站下车的事件为B,则结果有:(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共6种结果,故P(B)=.20.已知抛物线:()的焦点为,点在抛物线上,且,直线与抛物线交于,两点,为坐标原点.(1)求抛物线的方程;(2)求的面积.参考答案:(1)解:∵在抛物线上,且,∴由抛物线定义得,∴∴所求抛物线的方程为.(2)解:由消去,并整理得,,设,,则,由(1)知∴直线过抛物线的焦点,∴又∵点到直线的距离,∴的面积.21.(1)设a,b是两个不相等的正数,若+=1,用综合法证明:a+b>4(2)已知a>b>c,且a+b+c=0,用分析法证明:<.参考答案:【考点】R8:综合法与分析法(选修).【分析】(1)利用综合法进行证明即可.(2)利用分析法进行证明.【解答】解:(1)因为a>0,b>0,且a≠b,所以a+b=(a+b)()=1+1+>2+2=4.所以a+b>4
(2)因为a>b>c,且a+b+c=0,所以a>0,c<0,要证明原不等式成立,只需证明<a,即证b2﹣ac<3a2,又b=﹣(a+c),从而只需证明(a+c)2﹣ac<3a2,即证(a﹣c)(2a+c)>0,因为a﹣c>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衣物捐赠及转让协议
- 纺织品的智能生产调度优化考核试卷
- 购房定金的法律咨询服务协议
- 电影叙事技巧与剧情发展考核试卷
- 中班礼仪:尊敬长辈
- 肿瘤内科常见急症及护理
- 石棉制品生产过程中的节能减排考核试卷
- 服装零售企业危机应对与舆情管理考核试卷
- 电视机制造业的数字化供应链管理考核试卷
- 畜牧业信息技术在养殖中的应用考核试卷
- 青铜器科普宣传
- 《大学生创新创业基础教程》第六章创业资源与融资
- 山水林田湖草生态环境调查技术规范DB41-T 1992-2020
- 大众旅游服务质量控制手册
- GB/T 44421-2024矫形器配置服务规范
- 大型活动策划与管理第八章 大型活动风险管理
- Q∕GDW 12165-2021 高海拔地区运维检修装备配置规范
- JGJ107-2016钢筋机械连接技术规程
- 妇科医生进修汇报课件
- 动态分析与设计实验报告总结
- 2024年江苏省泰州市海陵区中考一模数学试卷
评论
0/150
提交评论