版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁市联盟中学2022年高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知角的终边过点,且,那么等于(
)(A)
(B) (C) (D)参考答案:A2.若对于任意实数x,都有f(-x)=f(x),且f(x)在(-∞,0]上是增函数,则(
)
A.f(-)<f(-1)<f(2)
B.f(-1)<f(-)<f(2)
C.f(2)<f(-1)<f(-)
D.f(2)<f(-)<f(-1)参考答案:D略3.设两条直线的方程分别为x+y+a=0和x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤,则这两条直线间距离的最大值和最小值分别为()A. B. C. D.参考答案:D【考点】3W:二次函数的性质.【分析】利用方程的根,求出a,b,c的关系,求出平行线之间的距离表达式,然后求解距离的最值.【解答】解:因为a,b是方程x2+x+c=0的两个实根,所以a+b=﹣1,ab=c,两条直线之间的距离d=,所以d2==,因为0≤c≤,所以≤1﹣4c≤1,即d2∈[,],所以两条直线之间的距离的最大值和最小值分别是,.故选:D.4.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有(
)A.2个
B.4个
C.6个
D.8个参考答案:B5.若偶函数f(x)在(﹣∞,﹣1]上是增函数,则下列关系式中成立的是(
)A.f(﹣)<f(﹣1)<f(2) B.f(﹣1)<f(﹣)<f(2) C.f(2)<f(﹣1)<f(﹣) D.f(2)<f(﹣)<f(﹣1)参考答案:D【考点】奇偶性与单调性的综合.【专题】常规题型.【分析】题目中条件:“f(x)为偶函数,”说明:“f(﹣x)=f(x)”,将不在(﹣∞,﹣1]上的数值转化成区间(﹣∞,﹣1]上,再结合f(x)在(﹣∞,﹣1]上是增函数,即可进行判断.【解答】解:∵f(x)是偶函数,∴f(﹣)=f(),f(﹣1)=f(1),f(﹣2)=f(2),又f(x)在(﹣∞,﹣1]上是增函数,∴f(﹣2)<f(﹣)<f(﹣1)即f(2)<f(﹣)<f(﹣1)故选D.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、奇偶性与单调性的综合等基础知识,考查运算求解能力、化归与转化思想.属于基础题.6.函数的递减区间为
A.(1,+)
B.(-,]
C.(,+)
D.(-,]参考答案:A7.已知全集集合,,下图中阴影部分所表示的集合为()A. B. C. D.参考答案:A试题分析:由图可以得到阴影部分表示集合为,={2,3,4,5},则={1},选A考点:1.集合的运算.2.集合概念.
8.如图,单摆从某点开始来回摆动,离开平衡位置O的距离s(cm)和时间t(s)的函数关系
式为那么单摆来回摆动一次所需的时间为()A.2πs
B.πs
C.0.5s
D.1s参考答案:B略10.已知是一列互不相等的正整数.若任意改变这个数的顺序,并记为,则数的值必为(
)A.偶数
B.奇数
C.
D.参考答案:A10.设全集则下图中阴影部分表示的集合为
(
)A.
B.C.{x|x>0}
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若集合值为____________.参考答案:0,1,-1略12.函数的定义域是_______________。参考答案:略13.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的表面积为
。参考答案:3π
略14.已知两直线l1:(3+m)x+4y+3m+5=0,l2:2x+(5+m)y+2=0,当l1∥l2时,m的值为.参考答案:﹣7【考点】直线的一般式方程与直线的平行关系.【分析】对m分类讨论,利用两条直线相互平行的充要条件即可得出.【解答】解:当m=﹣5时,此时两条直线相不平行,因此≠﹣5,∴﹣=﹣,解得,m=﹣7故答案为:﹣7.15.设,,,,则按从大到小的顺序是
.(用“>”号连接)参考答案:∵,∴;∵为锐角,故,又.∴.答案:
16.在△ABC中,BC=3,AB=2,且,则A=
.参考答案:120°17.定义运算为:例如,,则函数f(x)=的值域为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.参考答案:【考点】指数式与对数式的互化.【专题】对应思想;综合法;函数的性质及应用.【分析】利用对数的定义进行指对互化.【解答】解:①log5625=4,②log5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点评】本题考查了指对互化,是基础题.19.近几年,由于环境的污染,雾霾越来越严重,某环保公司销售一种PM2.5颗粒物防护口罩深受市民欢迎.已知这种口罩的进价为40元,经销过程中测出年销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售这种口罩的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(I)求y关于x的函数关系;(II)写出该公司销售这种口罩年获利W(万元)关于销售单价x(元)的函数关系式(年获利=年销售总金额﹣年销售口罩的总进价﹣年总开支金额);当销售单价x为何值时,年获利最大?最大获利是多少?(III)若公司希望该口罩一年的销售获利不低于57.5万元,则该公司这种口罩的销售单价应定在什么范围?在此条件下要使口罩的销售量最大,你认为销售单价应定为多少元?参考答案:【考点】函数模型的选择与应用.【分析】(I)由图象可知y关于x的函数关系式是一次函数,设y=kx+b,用“两点法”可求解析式;(II)根据年获利=年销售总金额一年销售产品的总进价一年总开支金额,列出函数关系式;(III)令W≥57.5,从而确定销售单价x的范围,及二次函数w最大时,x的值.【解答】解:(I)由题意,设y=kx+b,图象过点(70,5),(90,3),,得k=﹣,b=12,∴…(II)由题意,得w=y(x﹣40)﹣z=y(x﹣40)﹣(10y+42.5)=(﹣x+12)(x﹣40)﹣10(﹣x+12)﹣42.5=﹣0.1x2+17x﹣642.5=﹣(x﹣85)2+80.当销售单价为85元时,年获利最大,最大值为80万元…(III)令W≥57.5,﹣0.1x2+17x﹣642.5≥57.5,…整理得x2﹣170x+7000≤0,解得70≤x≤100.…故要使该口罩一年的销售获利不低于57.5万元,单价应在70元到100元之间.…又因为销售单价越低,销售量越大,所以要使销售量最大且获利不低于57.5万元,销售单价应定为70元.
…20.甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,那么(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一个抽到选择题的概率是多少?参考答案:解:(1)甲从选择题中抽到一题的可能结果有6个,乙从判断题中抽到一题的可能结果有4个,又甲、乙依次抽一题的结果共有10×9个,所以甲抽到选择题,乙抽到判断题的概率是:=
…………5′(2)甲、乙二人依次都抽到判断题的概率为,故甲、乙二人中至少有一人抽到选择题的概率为1-=.
……………5′或:++=++=,所求概率为
略21.已知,.(1)求的值;(2)求的值.参考答案:(1);(2).试题分析:(1)由可求得,再结合正切的二倍角公式便可求得;(2)利用三角恒等变换对代数式进行化简有,将(1)中所求的的值代入即可.试题解析:(1)∵tan2θ=-2,∴=-2,∴tanθ=或tanθ=-.∵;∴tanθ<0,∴tanθ=-.(2)∵=,∴原式====.考点:三角恒等变换.22.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)求f(x)在[0,]上的最大、最小值及相应的x的值.参考答案:【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;HW:三角函数的最值.【分析】(1)由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值2,求出φ,即可得到函数的解析式.(2)由x的范围,可求2x﹣的范围,利用正弦函数的图象和性质即可得解.【解答】(本小题满分12分)解:(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《建筑设备(给水排水)》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《水文统计学与水文信息处理》2023-2024学年第一学期期末试卷
- 2025年天津市建筑安全员C证(专职安全员)考试题库
- 有机黄芪标准化种植项目可行性研究报告-有机黄芪市场需求持续扩大
- 2025山东建筑安全员C证考试题库
- 广州中医药大学《中学生物学教材分析与教学设计》2023-2024学年第一学期期末试卷
- 2025青海省建筑安全员B证考试题库及答案
- 2025福建省安全员-B证考试题库附答案
- 2025甘肃省建筑安全员-B证考试题库及答案
- 2025江西建筑安全员-B证考试题库及答案
- 穴位注射的机理与其在临床上的应用课件
- 学校校史编纂工作方案
- 农产品质量安全法解读
- 2024年石油石化技能考试-钻井工具装修工历年考试高频考点试题附带答案
- 人体器官有偿捐赠流程
- 青岛版数学五年级下册第二单元《分数的意义和性质》教学评一致性的单元整体备课
- 清朝的八旗制度及其影响
- 拇外翻护理查房课件
- 2023年采购电子主管年度总结及下一年展望
- 高考语用必考点-理解词语的含义+课件
- 混凝土采购组织供应、运输、售后服务方案
评论
0/150
提交评论