基于拉脱法的锚下有效预应力检测在转体桥中的应用_第1页
基于拉脱法的锚下有效预应力检测在转体桥中的应用_第2页
基于拉脱法的锚下有效预应力检测在转体桥中的应用_第3页
基于拉脱法的锚下有效预应力检测在转体桥中的应用_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于拉脱法的锚下有效预应力检测在转体桥中的应用

0孟祥源主要研究方向桥梁现代化是指将桥梁结构制备为非设计轴线,然后通过旋转将其定位的施工方法。根据桥梁结构的转动方向,可分为竖转法、平转法及两者相结合的施工方法,其中平转法的应用最广泛对于转体桥的预应力结构,预应力束筋有效值是否满足设计要求及其分布状态对桥梁安全有至关重要的意义。影响预应力混凝土桥的有效预应力分布状态的因素很多,如张拉工艺、混凝土收缩徐变、孔道摩阻等都会对有效预应力值产生影响。孟祥源对于预应力混凝土结构中有效预应力分布状态及预应力变化对桥梁竖向变形的影响有待进一步研究。本文利用反拉法对桥梁的有效预应力进行了检测1预测测试结果的分析1.1桥壁梁板件结构本文预应力研究对象为山东省内邯济铁路至胶济铁路联络线工程特大转体桥,转体质量为25000t。主桥总体设计为独塔双索面有砟轨道矮塔加劲预应力混凝土T构,孔跨布置为(120+120)m。桥梁采用塔梁刚接的结构体系,主梁为三向预应力结构,桥塔内同样配置预应力钢束,斜拉索采用扇形布置,曲率半径为800m。主梁全长239.8m,计算跨径为(119.05+119.05)m,边支座中心线至梁端0.85m(见图1)。索塔梁顶面以上全高29.7m。采用实心截面,外轮廓做倒角处理。索塔横向宽度均为4~6m。为抵消桥塔横向弯矩,索塔下塔柱部分布置有竖向预应力。截面采用单箱双室、变高度连续箱梁,中支点截面梁高7.0m,跨中及边跨等高段梁高4.5m,梁底下缘按二次抛物线变化。一般段箱梁顶宽16.1m,底宽13.6m,中支点顶宽局部加宽至16.5m。顶板厚度除支点附近均为0.4m;采用直腹板形式,腹板厚0.5m→0.7m→0.8m,按折线变化;底板厚由0.4m变化至根部的1m。1.2预应力筋反拉本研究采用拉脱法测试钢绞线有效预应力,具体方法阐述如下。拉脱法的工作条件:预应力钢绞线的工作长度需保留,否则无法进行反拉。其基本操作为:在对单根预应力钢绞线进行反拉时,在穿心式千斤顶和工具锚之间放置穿心压力传感器,同时采用高精度位移计测试钢绞线延伸量。检测装置如图2所示。根据测试的钢绞线张拉力-时间关系曲线(见图3)得出钢绞线预应力值。1.3监狱活检根全桥对100束有效预应力进行抽检,球铰转盘预应力钢绞线抽检25根,纵向H1~H7抽检19根,横向Z1~Z2分别抽检3根;现浇A号块抽检15根,索塔预应力钢绞线抽检15根,大里程CD段抽检10根,大里程D号段抽检10根,小里程CD段抽检15根,小里程D号段抽检10根,部分测点如图4所示。1.4测曲线,绘制测曲线由于篇幅所限,仅展示锚下有效预应力部分检测曲线,如图5所示。全桥共抽检100束,其中不合格的共有5束,合格率为95%,对其中不合格的预应力进行补拉,达到预应力设计值。1.5理论模型假设将利用拉脱法测试的100个有效预应力值作为统计样本,开展概率分布假设。利用正态、对数正态、威布尔3种概率分布假设,建立钢绞线张拉力概率分布模型,使用柯尔莫哥洛夫检验法分别对各种分布假设进行检验。值得注意的是,非参数假设检验法通常也采用χ利用柯尔莫哥洛夫检验法检验总体连续分布函数F(x)假设时,首先从总体抽取容量为n的子样,并把子样按由小到大的顺序进行排列,得出经验分布函数;在原假设下,计算检测值的理论分布函数F(x)的值,计算最大的统计量D统计正态分布、对数正态分布及威布尔分布的检验结果如表1所示。由表1可知,正态分布、对数正态分布和威布尔分布均接受假设,3种分布模型在95%置信区间内概率分布如图6所示。由图6可看出,正态分布的概率图中2个点在95%置信区间的边缘,其余点均在95%置信区间内;对数分布的概率图中有3个点略超出95%置信区间;威布尔分布的概率图中的两端均有多点超出95%置信区间。虽然假设检验结果显示钢绞线预应力也服从对数正态分布,但考虑到正态分布的假设检验结果最优,最终检验结果为钢绞线预应力服从正态分布。正态分布的概率密度函数为:式中:u为均值;σ通过计算求得均值u=17.886kN,方差σ通过查找正态分布概率表,得出有效预应力的95%置信区间上限分位点值为19.26kN,95%置信区间下限分位点值为16.51kN。2有效预测对主梁线性的影响2.1梁体挠度分析基于Midas/Civil有限元软件建立全桥的施工监控模型,全桥施工监控模型如图7所示。为验证1.4节得出的正态分布的概率密度函数线形是否满足要求,将Midas中的预应力值设置为正态分布函数的均值17.886kN,计算有效预应力在所得分布函数的均值下梁体挠度。由图8可看出,在边跨合龙段梁体下挠值较大,在索塔中心位置由于有塔柱的竖向约束故变化值较小。根据Midas计算出的挠度值绘制挠度随梁体变化曲线,如图9所示。由图9可知,当预应力为正态分布的概率密度函数的均值时,主梁的挠度由索塔中心向两端逐渐增大,在边跨合龙段出现最大值,最大值为189.83mm。当预应力为设计值时,即预应力为100%时,主梁的最大挠度为167.61mm,两者差值为22.22mm,满足规范中规定的施工控制中主梁标高偏差应小于±L/5000(L为跨径),所以1.4节所得出的预应力正态分布的概率密度函数满足线形控制要求,即该正态分布的概率密度函数符合实际要求。2.2梁体下挠度随梁体截面的变化特征为研究预应力变化对主桥线形的影响,将预应力值设置为设计值的70%,80%,90%,100%,计算不同预应力下的竖向位移,分析计算不同预应力的条件下对10年混凝土收缩徐变后梁体线形的影响。统计不同有效预应力下梁体挠度最大值,分析有效预应力的影响,结果如表2所示。通过计算结果得到不同预应力的挠度值随梁体截面的变化曲线,如图10所示。由图10与表2可知,在索塔中心位置,由于有塔柱的竖向约束故变化值较小,在边跨合龙段梁体下挠值较大。70%的预应力下梁体下挠的最大值为241.98mm,80%的预应力下梁体下挠的最大值为216.87mm,90%的预应力下梁体下挠的最大值为190.84mm,100%的预应力下梁体下挠的最大值为167.61mm,挠度变化率如图11所示。随着预应力的减小,梁体下挠增大,两者为负相关;预应力每减小10%,梁体挠度变化率增大约15%。通过以上数据可知,锚下有效预应力对大跨度预应力混凝土桥梁的挠度影响较大,可认为预应力损失是影响挠度变化的主要原因之一。因此,保证有效预应力达到设计要求值对梁体的线形变化有至关重要的影响。若预应力未达到设计值,梁体则会出现下挠过大,过早出现裂缝,甚至更严重的病害。3钢绞线正态分布模型1)利用拉脱法对本文研究桥梁有效预应力进行检测,检验合格率为95%以上,对不合格预应力进行补拉。2)利用数理统计方法,得出预应力钢绞线服从正态分布,并得出概率统计模型的数学表达式;且利用M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论