版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
PAGE
1
英文原文
1.5ExperimentalSetup
Duetothemanyconceptsandvariationsinvolvedinperformingtheexperimentsinthisprojectandalsobecauseoftheirintroductorynature,Project1willverylikelybethemosttimeconsumingprojectinthiskit.Thisprojectmayrequireasmuchas9hourstocomplete.Werecommendthatyouperformtheexperimentsintwoormorelaboratorysessions.Forexample,powerandastigmaticdistancecharacteristicsmaybeexaminedinthefirstsessionandthelasttwoexperiments(frequencyandamplitudecharacteristics)maybeperformedinthesecondsession.
ANoteofCaution
Alloftheabovecommentsrefertosingle-modeoperationofthelaserwhichisaveryfragiledevicewithrespecttoreflectionsandoperatingpoint.Onemustensurethatbeforeperformingmeasurementsthelaserisindeedoperatingsingle-mode.Thiscanberealizedifasingle,broadfringepatternisobtainedorequivalentlyagoodsinusoidaloutputisobtainedfromtheMichelsoninterferometerasthepathimbalanceisscanned.Ifthisisnotthecase,thelaserisprobablyoperatingmultimodeanditscurrentshouldbeadjusted.Ifsingle-modeoperationcannotbeachievedbyadjustingthecurrent,thenreflectionsmaybedrivingthelasermultimode,inwhichcasethesetupshouldbeadjustedtominimizereflections.Ifstillnotoperatingsingle-mode,thelaserdiodemayhavebeendamagedandmayneedtobereplaced.
Warning
Thelasersprovidedinthisprojectkitemitinvisibleradiationthatcandamagethehumaneye.Itisessentialthatyouavoiddirecteyeexposuretothelaserbeam.Werecommendtheuseofprotectiveeyeweardesignedforuseatthelaserwavelengthof780nm.
ReadtheSafetysectionsintheLaserDiodeDriverOperatingManualandinthelaserdiodesectionofComponentHandlingandAssembly(AppendixA)beforeproceeding.
1.5.1SemiconductorDiodeLaserPowerCharacteristics
1.Assemblethelasermountassembly(LMA-I)andconnectthelasertoitspowersupply.Wewillfirstcollimatethelightbeam.Connectthelaserbeamtoavideomonitorandimagethelaserbeamonawhitesheetofpaperheldabouttwototen
(xzplaneinFigure1.1)isparallelwiththetablesurface.
2.Duetotheasymmetricdivergenceofthelight,thecross-sectionofthebeamleavingthelaserand,further,pastthesphericallensiselliptical.Thebeam,thus,hastwodistinctfocalpoints,oneintheplaneparallelandtheotherintheplaneperpendiculartothelaserdiodejunction.Thereisapointbetweenthetwofocalpointswherethebeamcross-sectioniscircular.Withtheinfraredimagerandawhitecard,roughlydeterminethepositionwherethebeamcross-sectioniscircular.
Figure1.9–Procedureforfindingastigmaticdistance.
3.Adjustthelaserdiodetolensdistancesuchthattherazorbladesarelocatedinthexyplanewherethebeamcross-sectioniscircular.
4.Movethelaserdiodeawayfromthelensuntilminimumbeamwaistisreachedattheplaneofrazorblades.Now,movethelaserdiodeabout200µmfurtherawayfromthelens.
5.Moverazorblade1inthexdirectionacrossthebeamthroughthebeamspreadθxandrecordthexpositionanddetectedintensityateachincrement(≤100µmincrements).TheexpectedoutputisshowninFigure1.9.Thederivativeofthiscurveyieldstheintensityprofileofthebeaminthexdirectionfromwhichthebeamdiameterisdetermined.
6.Repeatwithrazorblade2forθyintheydirection.
7.Movethelaserclosertothelensinincrements(≤50µm)throughatotalofatleastthan500µm.RepeatSteps5and6ateachzincrement,recordingthezposition.
8.Usingthecollecteddata,determinethebeamintensityprofilesinthexandydirectionsasafunctionofthelenspositionz.Thisisdonebydifferentiatingeachdatasetwithrespecttoposition.Then,calculatethebeamdiameterandplotasafunctionofz.Thedifferenceinzfortheminimuminθxandθyistheastigmaticdistanceofthelaserdiode.Useofcomputersoftware,especiallyindifferentiatingthedata,ishighlyrecommended.
Ifthelaserjunctionisnotparalleltothetablesurface,thenforeachmeasurementabove,youwillobtainanadmixtureofthetwobeamdivergencesandthemeasurementwillbecomeimprecise.Ifthelaserisorientedat45°tothesurfaceofthetable,theastigmaticdistancewillbezero.
Differentlaserstructureswillhavedifferentangularbeamdivergencesand,thus,differentastigmaticdistances.Ifyouhaveaccesstoseveraldifferentlasertypes(gainguided,indexguided),itmaybeinstructivetocharacterizetheirastigmaticdistances.
1.5.3FrequencyCharacteristicsofDiodeLasers
Inordertostudyfrequencycharacteristicsofadiodelaser,wewillemployaMichelsoninterferometertoconvertfrequencyvariationsintointensityvariations.Anexperimentalsetupforexaminingfrequencyand,also,amplitudecharacteristicsofalasersourceisillustratedinFigure1.10.
1.Inthisexperiment,itisverypossiblethatlightmaybecoupledbackintothelaser,thereby,destabilizingit.Anopticalisolator,therefore,willberequiredtominimizefeedbackintothelaser.Asimpleisolatorwillbeconstructedusingapolarizingbeamsplittercubeandaquarterwaveplate.Weorientthequarterwaveplatesuchthatthelinearlypolarizedlightfromthepolarizerisincidentat45°totheprincipalaxesofthequarterwaveplatesothatlightemergingfromthequarterwaveplateiscircularlypolarized.Reflectionschangeleft-circularpolarizedlightintoright-circularorviceversasothatreflectedlightreturningthroughthequarterwaveplatewillbelinearlypolarizedand90°rotatedwithrespecttothepolarizertransmissionaxis.Thepolarizer,then,greatlyattenuatesthereturnbeam.
Inassemblingtheisolator,makesurethatthelaserjunction(xzplaneinFigure1.1)isparalleltothesurfaceofthetable(thenotchonthelaserdiodecasepointsupward)andthebeamiscollimatedbythelens.Thelaserbeamshouldbeparalleltothesurfaceoftheopticaltable.Setthepolarizerandquarterwave(λ/4)plateinplace.Placeamirroraftertheλ/4plateandrotatetheλ/4platesothatmaximumrejectedsignalisobtainedfromtherejectionportofthepolarizingbeamsplittercubeasshowninFigure1.11.Whenthissignalismaximized,thefeedbacktothelasershouldbeataminimum.
2.ConstructtheMichelsoninterferometerasshowninFigure1.12.Placethebeamsteeringassembly(BSA-II)ontheopticaltableandusethereflectedbeamfromthemirrortoadjustthequarterwaveplateorientation.Setthecubemount(CM)ontheopticalbreadboard,placeadoublesidedpieceofadhesivetapeonthemount,andputthenonpolarizingbeamsplittercube(05BC16NP.6)ontheadhesivetape.Next,placetheotherbeamsteeringassembly(BSA-I)andthedetectormount(M818BB)inlocationandadjustthemirrorssothatthebeamsreflectedfromthetwomirrorsoverlapatthedetector.
Whenlongpathlengthmeasurementsaremade,theinterferometersignalwilldecreaseordisappearifthelasercoherencelengthislessthanthetwowayinterferometerpathimbalance.Ifthisisthecase,shortentheinterferometeruntilthesignalreappears.Ifthisdoesnotwork,thencheckthelaserforsingle-modeoperationbylookingforthefringepatternonacardorbyscanningthepiezoelectrictransducerblock(PZB)inBSA-IIandmonitoringthedetectoroutputwhichshouldbesinusoidalwithPZBscandistance.Ifthelaserdoesnotappeartobeoperatingsingle-mode,realigntheisolatorand/orchangethelaseroperatingpointbyvaryingthebiascurrent.Additionally,toensuresingle-modeoperation,thelasershouldbeDCbiasedabovethresholdbeforeapplyingACmodulation.Overdrivingthelasercanalsoforceitintomultimodeoperation.
3.TheMichelsoninterferometerhasthepropertythatdependingonthepositionofthemirrors,lightmaystronglycouplebacktowardthelaserinputport.Inordertofurtherreducethefeed-back,slightlytiltthemirrorsasillustratedinFigure1.13.Ifstillunabletoobtainsingle-modeoperation,replacethelaserdiode.
4.Placeawhitecardinfrontofthedetectorandobservethefringepatternwiththeinfraredimager.Slightlyadjustthemirrorstoobtainthebestfringepattern.Trytoobtainonebroadfringe.
5.Positionthedetectoratthecenterofthefringepatternsothatitinterceptsnomorethanaportionofthecenteredpeak.
6.Byapplyingavoltagetothepiezoelectrictransducerblockattachedtothemirror(partPZB)inonearmoftheinterferometer(i.e.BSA-II),maximizetheoutputintensity.Theoutputshouldbestableoveratimeperiodofaminuteorso.Ifitisnot,verifythatallcomponentsarerigidlymounted.Iftheyare,thenroomaircurrentsmaybedestabilizingthesetup.Inthiscase,placeabox(cardboardwilldo)overthesetuptopreventaircurrentsfromdisturbingtheinterferometersetup.
7.Placetheinterferometerinquadrature(pointofmaximumsensitivitybetweenmaximumandminimumoutputsoftheinterferometer)byvaryingthevoltageonthePZB.
8.Theoutputsignaloftheinterferometerduetofrequencyshiftingofthelaserisgivenby∆I∝∆φ=2π/c∆L∆νwhere∆Listhedifferenceinpathlengthbetweenthetwoarmsoftheinterferometerand∆νisthefrequencysweepofthelaserthatisinducedbyapplyingacurrentmodulation.RememberthatinaMichelsoninterferometer∆Listwicethephysicaldifferenceinlengthbetweenthearmssincelighttraversesthislengthdifferenceinbothdirections.∆Lvaluesof3-20cmrepresentconvenientlengthdifferenceswiththelarger∆Lyieldinghigheroutputsignals.
Beforeweapplyacurrentmodulationtothelaser,notethattheinterferometeroutputsignal,∆I,shouldbemadelargerthanthedetectororlasernoiselevelsbyproperchoiceof∆Landcurrentmodulationamplitudedi.AlsorecallfromSection1.3thatwhenthediodecurrentismodulatedsoisthelaserintensityaswellasitsfrequency.Wecanmeasurethelaserintensitymodulationbyblockingonearmoftheinterferometer.Thiseliminatesinterferenceandenablesmeasurementoftheintensitymodulationdepth.We,then,subtractthisvaluefromthetotalinterferometeroutputtodeterminethetruedI/diduetofrequencymodulation.Applyalowfrequency,smallcurrentmodulationtothelaserdiode.Notethatwhentheproperrangeisbeingobserved
and
fortheamplitudechangeonly.Recalling
,,
or
whereKisadetectorresponseconstantdeterminedbyvarying∆L.
9.Withtheinterferometeranddetectionsystemproperlyadjusted,varythedrivefrequencyofthelaserandobtainthefrequencyresponseofthelaser(Figure1.4or1.10a).Youwillneedtorecordtwosetsofdata:(i)themodulationdepthoftheinterferometeroutputasafunctionoffrequency,and(ii)thelaserintensitymodulationdepth.ThedifferenceofthetwosetsofcollecteddatawillprovideanestimateoftheactualdI/diduetofrequencymodulation.Alsonotethatifthecurrentmodulationissufficientlysmallandthepathmismatchsufficientlylarge,thelaserintensitymodulationmaybenegligible.YoumayneedtoactivelykeeptheinterferometerinquadraturebyadjustingthePZBvoltage.
Makeanynecessaryfunctiongeneratoramplitudeadjustmentstokeepthecurrentmodulationdepthofthelaserconstantasyouvarythefrequency.Thisisbecausethefunctiongenerator/drivercombinationmaynothaveaflatfrequencyresponse.Theeffectofthisisthatthecurrentmodulationdepthdiisnotconstantandvarieswithfrequency.Sotoavoidunnecessarycalculations,monitorthecurrentmodulationdepthbyconnectingtheLASERMONITORconnectoronthelaserdiodedriversystemtoanoscilloscopeandkeepthemodulationdepthconstantbyadjustingtheamplitudeoftheappliedsinusoidalwaveasafunctionoffrequency.Recordthefrequencyforyourlaseratwhichthethermalcontributiontodν/dibeginstobecomenegligibleanddν/didropsoff(seeSection1.3).
10.Keepingtheaboveequationsinmind,wewill,now,measuretheFMchirpcharacteristicsofthelaser.Ataconstantcurrentmodulationfrequency(chooseamodulationfrequencywheredν/divariesrapidly,i.e.wheretheslopeofyourgraphfromStep9,whichshouldbesimilartoFigure1.10a,ismaximum),varythecurrentmodulationdepthdifordifferentlaserbiaslevelsandderiveacurvesuchastheoneinFigure1.10b.Theoutputdνshouldnotvarysignificantlyexceptaroundthresholdandathighcurrents.
Caution
Donotexceedthespecifieddrivecurrents/outputpowerratingsofthediodeoritmaybedamaged.
11.Thephasenoisecharacteristicbehavior(Section1.4)asafunctionofinterferometerpathlengthimbalance∆Lmaybedeterminedbyinducingphasenoisethroughapplicationoflasercurrentmodulation.Makesurethattheinterferometerisinquadrature.
Setthelaserdiodecurrentabovethreshold,applyasmallcurrentmodulation,andfixthemodulationfrequencyatadesiredvalue.Convenientfrequenciesmayinclude50Hz,2kHz,and50kHz(seeReference1.5).Monitorthedetectoroutputwithaspectrumanalyzeroranoscilloscopeandrecordthepeak-to-peakoutputintensityatinterferometerquadrature.YoumayaccomplishthisbymanuallysweepingthePZBvoltagetocauseaminimumofπ/2phaseshift,recordingthemaximumpeak-to-peakintensityasafunctionofpathlengthimbalance.Itisimportanttoensurethatinstrumentnoiseisbelowthesignallevelsexpectedanditisassumedthatsingle-modeoperationofthelaserismaintained.CurvessimilartoFigure1.10cshouldbeobtained.
1.5.4AmplitudeCharacteristicsofDiodeLasers
ThemeasurementsoftheintensitycharacteristicsaretakenbyplacingthedetectorbeforetheinterferometerasinFigure1.10orbyblockingonemirrorintheinterferometer.Again,thelasermustbeoperatedsingle-modedwithminimumfeedbackorthenoiselevelandfunctionalitywilldrasticallychange.Therelativeintensitynoise(RIN)isdefinedas20log(dI/I)wheredIistheRMSintensityfluctuationssothatfordI~10-4,theRINis-80dB.Normally,thesemeasurementsaremadewithaspectrumanalyzeranda1Hzbandwidth.
WhenmakingRINmeasurements,electronicandphotodetectorshotnoisemustbebelowtheRINlevels.(OPTIONAL)Youmaydeterminetheshotnoiseusinganincoherentsource(e.g.lamp)withanintensitylevelsimilartothatofthelaser.Theresultantfrequencyspectrumofnoisewiththelightsourceexcitedgivesameasureoftheshotnoiselevelwhichshouldbeadjustedtobeatleast10dBgreaterthanelectronicnoiselevels.ThemeasuredshotnoiseshouldbecheckedwithEquation0.47.
1.Varythelaserdrivecurrentfrombelowthresholdt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河北衡水铁路电气化学校高校应届毕业生引进笔试模拟试题及答案解析
- 2026宝鸡太白县总工会招聘社会化工作者(2人)笔试模拟试题及答案解析
- 2026年及未来5年市场数据中国煤焦油行业市场运营现状及投资规划研究建议报告
- 2026北京航空航天大学飞行学院聘用编教务助理F岗招聘1人笔试参考题库及答案解析
- 2026年及未来5年市场数据中国着色素行业市场调研分析及投资战略规划报告
- 2026春季河南新乡工商职业学院招聘笔试模拟试题及答案解析
- 2025年物联网在农业现代化行业创新报告
- 2026北京海淀区育英学校招聘笔试模拟试题及答案解析
- 2026广东佛山南海狮山镇小塘第四幼儿园招聘3人笔试备考题库及答案解析
- 2026浙江台州玉环农商银行寒假实习生招聘笔试参考题库及答案解析
- (自2026年1月1日起施行)《增值税法实施条例》的重要变化解读
- 2025年游戏陪玩分成协议
- 全国秸秆综合利用重点县秸秆还田监测工作方案
- 2026年内蒙古化工职业学院单招职业适应性考试参考题库及答案解析
- 国家事业单位招聘2024国家水利部小浪底水利枢纽管理中心招聘事业单位人员拟聘用人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 核生化应急救援中心火灾预案
- 25数五上数学人教版期末押题卷5套
- 2026年辽宁金融职业学院单招职业适应性测试题库及参考答案详解
- 中小企业人才流失问题及对策分析
- 2026年教师资格之中学综合素质考试题库500道及完整答案【名师系列】
- 中海大海洋地质学课件第4章河口与海岸-3第十二讲
评论
0/150
提交评论