版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
PAGE
1
英文原文
1.5ExperimentalSetup
Duetothemanyconceptsandvariationsinvolvedinperformingtheexperimentsinthisprojectandalsobecauseoftheirintroductorynature,Project1willverylikelybethemosttimeconsumingprojectinthiskit.Thisprojectmayrequireasmuchas9hourstocomplete.Werecommendthatyouperformtheexperimentsintwoormorelaboratorysessions.Forexample,powerandastigmaticdistancecharacteristicsmaybeexaminedinthefirstsessionandthelasttwoexperiments(frequencyandamplitudecharacteristics)maybeperformedinthesecondsession.
ANoteofCaution
Alloftheabovecommentsrefertosingle-modeoperationofthelaserwhichisaveryfragiledevicewithrespecttoreflectionsandoperatingpoint.Onemustensurethatbeforeperformingmeasurementsthelaserisindeedoperatingsingle-mode.Thiscanberealizedifasingle,broadfringepatternisobtainedorequivalentlyagoodsinusoidaloutputisobtainedfromtheMichelsoninterferometerasthepathimbalanceisscanned.Ifthisisnotthecase,thelaserisprobablyoperatingmultimodeanditscurrentshouldbeadjusted.Ifsingle-modeoperationcannotbeachievedbyadjustingthecurrent,thenreflectionsmaybedrivingthelasermultimode,inwhichcasethesetupshouldbeadjustedtominimizereflections.Ifstillnotoperatingsingle-mode,thelaserdiodemayhavebeendamagedandmayneedtobereplaced.
Warning
Thelasersprovidedinthisprojectkitemitinvisibleradiationthatcandamagethehumaneye.Itisessentialthatyouavoiddirecteyeexposuretothelaserbeam.Werecommendtheuseofprotectiveeyeweardesignedforuseatthelaserwavelengthof780nm.
ReadtheSafetysectionsintheLaserDiodeDriverOperatingManualandinthelaserdiodesectionofComponentHandlingandAssembly(AppendixA)beforeproceeding.
1.5.1SemiconductorDiodeLaserPowerCharacteristics
1.Assemblethelasermountassembly(LMA-I)andconnectthelasertoitspowersupply.Wewillfirstcollimatethelightbeam.Connectthelaserbeamtoavideomonitorandimagethelaserbeamonawhitesheetofpaperheldabouttwototen
(xzplaneinFigure1.1)isparallelwiththetablesurface.
2.Duetotheasymmetricdivergenceofthelight,thecross-sectionofthebeamleavingthelaserand,further,pastthesphericallensiselliptical.Thebeam,thus,hastwodistinctfocalpoints,oneintheplaneparallelandtheotherintheplaneperpendiculartothelaserdiodejunction.Thereisapointbetweenthetwofocalpointswherethebeamcross-sectioniscircular.Withtheinfraredimagerandawhitecard,roughlydeterminethepositionwherethebeamcross-sectioniscircular.
Figure1.9–Procedureforfindingastigmaticdistance.
3.Adjustthelaserdiodetolensdistancesuchthattherazorbladesarelocatedinthexyplanewherethebeamcross-sectioniscircular.
4.Movethelaserdiodeawayfromthelensuntilminimumbeamwaistisreachedattheplaneofrazorblades.Now,movethelaserdiodeabout200µmfurtherawayfromthelens.
5.Moverazorblade1inthexdirectionacrossthebeamthroughthebeamspreadθxandrecordthexpositionanddetectedintensityateachincrement(≤100µmincrements).TheexpectedoutputisshowninFigure1.9.Thederivativeofthiscurveyieldstheintensityprofileofthebeaminthexdirectionfromwhichthebeamdiameterisdetermined.
6.Repeatwithrazorblade2forθyintheydirection.
7.Movethelaserclosertothelensinincrements(≤50µm)throughatotalofatleastthan500µm.RepeatSteps5and6ateachzincrement,recordingthezposition.
8.Usingthecollecteddata,determinethebeamintensityprofilesinthexandydirectionsasafunctionofthelenspositionz.Thisisdonebydifferentiatingeachdatasetwithrespecttoposition.Then,calculatethebeamdiameterandplotasafunctionofz.Thedifferenceinzfortheminimuminθxandθyistheastigmaticdistanceofthelaserdiode.Useofcomputersoftware,especiallyindifferentiatingthedata,ishighlyrecommended.
Ifthelaserjunctionisnotparalleltothetablesurface,thenforeachmeasurementabove,youwillobtainanadmixtureofthetwobeamdivergencesandthemeasurementwillbecomeimprecise.Ifthelaserisorientedat45°tothesurfaceofthetable,theastigmaticdistancewillbezero.
Differentlaserstructureswillhavedifferentangularbeamdivergencesand,thus,differentastigmaticdistances.Ifyouhaveaccesstoseveraldifferentlasertypes(gainguided,indexguided),itmaybeinstructivetocharacterizetheirastigmaticdistances.
1.5.3FrequencyCharacteristicsofDiodeLasers
Inordertostudyfrequencycharacteristicsofadiodelaser,wewillemployaMichelsoninterferometertoconvertfrequencyvariationsintointensityvariations.Anexperimentalsetupforexaminingfrequencyand,also,amplitudecharacteristicsofalasersourceisillustratedinFigure1.10.
1.Inthisexperiment,itisverypossiblethatlightmaybecoupledbackintothelaser,thereby,destabilizingit.Anopticalisolator,therefore,willberequiredtominimizefeedbackintothelaser.Asimpleisolatorwillbeconstructedusingapolarizingbeamsplittercubeandaquarterwaveplate.Weorientthequarterwaveplatesuchthatthelinearlypolarizedlightfromthepolarizerisincidentat45°totheprincipalaxesofthequarterwaveplatesothatlightemergingfromthequarterwaveplateiscircularlypolarized.Reflectionschangeleft-circularpolarizedlightintoright-circularorviceversasothatreflectedlightreturningthroughthequarterwaveplatewillbelinearlypolarizedand90°rotatedwithrespecttothepolarizertransmissionaxis.Thepolarizer,then,greatlyattenuatesthereturnbeam.
Inassemblingtheisolator,makesurethatthelaserjunction(xzplaneinFigure1.1)isparalleltothesurfaceofthetable(thenotchonthelaserdiodecasepointsupward)andthebeamiscollimatedbythelens.Thelaserbeamshouldbeparalleltothesurfaceoftheopticaltable.Setthepolarizerandquarterwave(λ/4)plateinplace.Placeamirroraftertheλ/4plateandrotatetheλ/4platesothatmaximumrejectedsignalisobtainedfromtherejectionportofthepolarizingbeamsplittercubeasshowninFigure1.11.Whenthissignalismaximized,thefeedbacktothelasershouldbeataminimum.
2.ConstructtheMichelsoninterferometerasshowninFigure1.12.Placethebeamsteeringassembly(BSA-II)ontheopticaltableandusethereflectedbeamfromthemirrortoadjustthequarterwaveplateorientation.Setthecubemount(CM)ontheopticalbreadboard,placeadoublesidedpieceofadhesivetapeonthemount,andputthenonpolarizingbeamsplittercube(05BC16NP.6)ontheadhesivetape.Next,placetheotherbeamsteeringassembly(BSA-I)andthedetectormount(M818BB)inlocationandadjustthemirrorssothatthebeamsreflectedfromthetwomirrorsoverlapatthedetector.
Whenlongpathlengthmeasurementsaremade,theinterferometersignalwilldecreaseordisappearifthelasercoherencelengthislessthanthetwowayinterferometerpathimbalance.Ifthisisthecase,shortentheinterferometeruntilthesignalreappears.Ifthisdoesnotwork,thencheckthelaserforsingle-modeoperationbylookingforthefringepatternonacardorbyscanningthepiezoelectrictransducerblock(PZB)inBSA-IIandmonitoringthedetectoroutputwhichshouldbesinusoidalwithPZBscandistance.Ifthelaserdoesnotappeartobeoperatingsingle-mode,realigntheisolatorand/orchangethelaseroperatingpointbyvaryingthebiascurrent.Additionally,toensuresingle-modeoperation,thelasershouldbeDCbiasedabovethresholdbeforeapplyingACmodulation.Overdrivingthelasercanalsoforceitintomultimodeoperation.
3.TheMichelsoninterferometerhasthepropertythatdependingonthepositionofthemirrors,lightmaystronglycouplebacktowardthelaserinputport.Inordertofurtherreducethefeed-back,slightlytiltthemirrorsasillustratedinFigure1.13.Ifstillunabletoobtainsingle-modeoperation,replacethelaserdiode.
4.Placeawhitecardinfrontofthedetectorandobservethefringepatternwiththeinfraredimager.Slightlyadjustthemirrorstoobtainthebestfringepattern.Trytoobtainonebroadfringe.
5.Positionthedetectoratthecenterofthefringepatternsothatitinterceptsnomorethanaportionofthecenteredpeak.
6.Byapplyingavoltagetothepiezoelectrictransducerblockattachedtothemirror(partPZB)inonearmoftheinterferometer(i.e.BSA-II),maximizetheoutputintensity.Theoutputshouldbestableoveratimeperiodofaminuteorso.Ifitisnot,verifythatallcomponentsarerigidlymounted.Iftheyare,thenroomaircurrentsmaybedestabilizingthesetup.Inthiscase,placeabox(cardboardwilldo)overthesetuptopreventaircurrentsfromdisturbingtheinterferometersetup.
7.Placetheinterferometerinquadrature(pointofmaximumsensitivitybetweenmaximumandminimumoutputsoftheinterferometer)byvaryingthevoltageonthePZB.
8.Theoutputsignaloftheinterferometerduetofrequencyshiftingofthelaserisgivenby∆I∝∆φ=2π/c∆L∆νwhere∆Listhedifferenceinpathlengthbetweenthetwoarmsoftheinterferometerand∆νisthefrequencysweepofthelaserthatisinducedbyapplyingacurrentmodulation.RememberthatinaMichelsoninterferometer∆Listwicethephysicaldifferenceinlengthbetweenthearmssincelighttraversesthislengthdifferenceinbothdirections.∆Lvaluesof3-20cmrepresentconvenientlengthdifferenceswiththelarger∆Lyieldinghigheroutputsignals.
Beforeweapplyacurrentmodulationtothelaser,notethattheinterferometeroutputsignal,∆I,shouldbemadelargerthanthedetectororlasernoiselevelsbyproperchoiceof∆Landcurrentmodulationamplitudedi.AlsorecallfromSection1.3thatwhenthediodecurrentismodulatedsoisthelaserintensityaswellasitsfrequency.Wecanmeasurethelaserintensitymodulationbyblockingonearmoftheinterferometer.Thiseliminatesinterferenceandenablesmeasurementoftheintensitymodulationdepth.We,then,subtractthisvaluefromthetotalinterferometeroutputtodeterminethetruedI/diduetofrequencymodulation.Applyalowfrequency,smallcurrentmodulationtothelaserdiode.Notethatwhentheproperrangeisbeingobserved
and
fortheamplitudechangeonly.Recalling
,,
or
whereKisadetectorresponseconstantdeterminedbyvarying∆L.
9.Withtheinterferometeranddetectionsystemproperlyadjusted,varythedrivefrequencyofthelaserandobtainthefrequencyresponseofthelaser(Figure1.4or1.10a).Youwillneedtorecordtwosetsofdata:(i)themodulationdepthoftheinterferometeroutputasafunctionoffrequency,and(ii)thelaserintensitymodulationdepth.ThedifferenceofthetwosetsofcollecteddatawillprovideanestimateoftheactualdI/diduetofrequencymodulation.Alsonotethatifthecurrentmodulationissufficientlysmallandthepathmismatchsufficientlylarge,thelaserintensitymodulationmaybenegligible.YoumayneedtoactivelykeeptheinterferometerinquadraturebyadjustingthePZBvoltage.
Makeanynecessaryfunctiongeneratoramplitudeadjustmentstokeepthecurrentmodulationdepthofthelaserconstantasyouvarythefrequency.Thisisbecausethefunctiongenerator/drivercombinationmaynothaveaflatfrequencyresponse.Theeffectofthisisthatthecurrentmodulationdepthdiisnotconstantandvarieswithfrequency.Sotoavoidunnecessarycalculations,monitorthecurrentmodulationdepthbyconnectingtheLASERMONITORconnectoronthelaserdiodedriversystemtoanoscilloscopeandkeepthemodulationdepthconstantbyadjustingtheamplitudeoftheappliedsinusoidalwaveasafunctionoffrequency.Recordthefrequencyforyourlaseratwhichthethermalcontributiontodν/dibeginstobecomenegligibleanddν/didropsoff(seeSection1.3).
10.Keepingtheaboveequationsinmind,wewill,now,measuretheFMchirpcharacteristicsofthelaser.Ataconstantcurrentmodulationfrequency(chooseamodulationfrequencywheredν/divariesrapidly,i.e.wheretheslopeofyourgraphfromStep9,whichshouldbesimilartoFigure1.10a,ismaximum),varythecurrentmodulationdepthdifordifferentlaserbiaslevelsandderiveacurvesuchastheoneinFigure1.10b.Theoutputdνshouldnotvarysignificantlyexceptaroundthresholdandathighcurrents.
Caution
Donotexceedthespecifieddrivecurrents/outputpowerratingsofthediodeoritmaybedamaged.
11.Thephasenoisecharacteristicbehavior(Section1.4)asafunctionofinterferometerpathlengthimbalance∆Lmaybedeterminedbyinducingphasenoisethroughapplicationoflasercurrentmodulation.Makesurethattheinterferometerisinquadrature.
Setthelaserdiodecurrentabovethreshold,applyasmallcurrentmodulation,andfixthemodulationfrequencyatadesiredvalue.Convenientfrequenciesmayinclude50Hz,2kHz,and50kHz(seeReference1.5).Monitorthedetectoroutputwithaspectrumanalyzeroranoscilloscopeandrecordthepeak-to-peakoutputintensityatinterferometerquadrature.YoumayaccomplishthisbymanuallysweepingthePZBvoltagetocauseaminimumofπ/2phaseshift,recordingthemaximumpeak-to-peakintensityasafunctionofpathlengthimbalance.Itisimportanttoensurethatinstrumentnoiseisbelowthesignallevelsexpectedanditisassumedthatsingle-modeoperationofthelaserismaintained.CurvessimilartoFigure1.10cshouldbeobtained.
1.5.4AmplitudeCharacteristicsofDiodeLasers
ThemeasurementsoftheintensitycharacteristicsaretakenbyplacingthedetectorbeforetheinterferometerasinFigure1.10orbyblockingonemirrorintheinterferometer.Again,thelasermustbeoperatedsingle-modedwithminimumfeedbackorthenoiselevelandfunctionalitywilldrasticallychange.Therelativeintensitynoise(RIN)isdefinedas20log(dI/I)wheredIistheRMSintensityfluctuationssothatfordI~10-4,theRINis-80dB.Normally,thesemeasurementsaremadewithaspectrumanalyzeranda1Hzbandwidth.
WhenmakingRINmeasurements,electronicandphotodetectorshotnoisemustbebelowtheRINlevels.(OPTIONAL)Youmaydeterminetheshotnoiseusinganincoherentsource(e.g.lamp)withanintensitylevelsimilartothatofthelaser.Theresultantfrequencyspectrumofnoisewiththelightsourceexcitedgivesameasureoftheshotnoiselevelwhichshouldbeadjustedtobeatleast10dBgreaterthanelectronicnoiselevels.ThemeasuredshotnoiseshouldbecheckedwithEquation0.47.
1.Varythelaserdrivecurrentfrombelowthresholdt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房屋租赁及买卖合同:某房地产公司的房屋租赁及买卖协议2篇
- 人教版美术课件
- 样品协议合同范本共2篇
- 采购产品调研报告范文
- 油品购销合同范本2篇
- 2024版股权激励协议标的为高新技术企业3篇
- 部队垃圾分类报告范文
- 二零二四年度智能化家居定制合同2篇
- 2024版第三方支付工程款业务流程合同3篇
- 总公司和子公司的购销合同
- 唐多令芦叶满汀洲
- 不锈钢罐体加工工艺
- 基于深度学习的医学影像识别与分析
- 2024年磁共振成像装置项目实施方案
- 《高一数学三角函数诱导公式》课件
- 《设备润滑技术》课件
- 2024年湖北武汉城投集团招聘笔试参考题库含答案解析
- 第7课《珍视亲情+学会感恩》第1框《浓浓亲情+相伴一生》【中职专用】《心理健康与职业生涯》(高教版2023基础模块)
- 《感谢为我们服务的人》班会课件
- 高质量的幼儿园教育
- 小学体育-轻度损伤的自我处理教学课件设计
评论
0/150
提交评论