




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
PAGE
1
英文原文
1.5ExperimentalSetup
Duetothemanyconceptsandvariationsinvolvedinperformingtheexperimentsinthisprojectandalsobecauseoftheirintroductorynature,Project1willverylikelybethemosttimeconsumingprojectinthiskit.Thisprojectmayrequireasmuchas9hourstocomplete.Werecommendthatyouperformtheexperimentsintwoormorelaboratorysessions.Forexample,powerandastigmaticdistancecharacteristicsmaybeexaminedinthefirstsessionandthelasttwoexperiments(frequencyandamplitudecharacteristics)maybeperformedinthesecondsession.
ANoteofCaution
Alloftheabovecommentsrefertosingle-modeoperationofthelaserwhichisaveryfragiledevicewithrespecttoreflectionsandoperatingpoint.Onemustensurethatbeforeperformingmeasurementsthelaserisindeedoperatingsingle-mode.Thiscanberealizedifasingle,broadfringepatternisobtainedorequivalentlyagoodsinusoidaloutputisobtainedfromtheMichelsoninterferometerasthepathimbalanceisscanned.Ifthisisnotthecase,thelaserisprobablyoperatingmultimodeanditscurrentshouldbeadjusted.Ifsingle-modeoperationcannotbeachievedbyadjustingthecurrent,thenreflectionsmaybedrivingthelasermultimode,inwhichcasethesetupshouldbeadjustedtominimizereflections.Ifstillnotoperatingsingle-mode,thelaserdiodemayhavebeendamagedandmayneedtobereplaced.
Warning
Thelasersprovidedinthisprojectkitemitinvisibleradiationthatcandamagethehumaneye.Itisessentialthatyouavoiddirecteyeexposuretothelaserbeam.Werecommendtheuseofprotectiveeyeweardesignedforuseatthelaserwavelengthof780nm.
ReadtheSafetysectionsintheLaserDiodeDriverOperatingManualandinthelaserdiodesectionofComponentHandlingandAssembly(AppendixA)beforeproceeding.
1.5.1SemiconductorDiodeLaserPowerCharacteristics
1.Assemblethelasermountassembly(LMA-I)andconnectthelasertoitspowersupply.Wewillfirstcollimatethelightbeam.Connectthelaserbeamtoavideomonitorandimagethelaserbeamonawhitesheetofpaperheldabouttwototen
(xzplaneinFigure1.1)isparallelwiththetablesurface.
2.Duetotheasymmetricdivergenceofthelight,thecross-sectionofthebeamleavingthelaserand,further,pastthesphericallensiselliptical.Thebeam,thus,hastwodistinctfocalpoints,oneintheplaneparallelandtheotherintheplaneperpendiculartothelaserdiodejunction.Thereisapointbetweenthetwofocalpointswherethebeamcross-sectioniscircular.Withtheinfraredimagerandawhitecard,roughlydeterminethepositionwherethebeamcross-sectioniscircular.
Figure1.9–Procedureforfindingastigmaticdistance.
3.Adjustthelaserdiodetolensdistancesuchthattherazorbladesarelocatedinthexyplanewherethebeamcross-sectioniscircular.
4.Movethelaserdiodeawayfromthelensuntilminimumbeamwaistisreachedattheplaneofrazorblades.Now,movethelaserdiodeabout200µmfurtherawayfromthelens.
5.Moverazorblade1inthexdirectionacrossthebeamthroughthebeamspreadθxandrecordthexpositionanddetectedintensityateachincrement(≤100µmincrements).TheexpectedoutputisshowninFigure1.9.Thederivativeofthiscurveyieldstheintensityprofileofthebeaminthexdirectionfromwhichthebeamdiameterisdetermined.
6.Repeatwithrazorblade2forθyintheydirection.
7.Movethelaserclosertothelensinincrements(≤50µm)throughatotalofatleastthan500µm.RepeatSteps5and6ateachzincrement,recordingthezposition.
8.Usingthecollecteddata,determinethebeamintensityprofilesinthexandydirectionsasafunctionofthelenspositionz.Thisisdonebydifferentiatingeachdatasetwithrespecttoposition.Then,calculatethebeamdiameterandplotasafunctionofz.Thedifferenceinzfortheminimuminθxandθyistheastigmaticdistanceofthelaserdiode.Useofcomputersoftware,especiallyindifferentiatingthedata,ishighlyrecommended.
Ifthelaserjunctionisnotparalleltothetablesurface,thenforeachmeasurementabove,youwillobtainanadmixtureofthetwobeamdivergencesandthemeasurementwillbecomeimprecise.Ifthelaserisorientedat45°tothesurfaceofthetable,theastigmaticdistancewillbezero.
Differentlaserstructureswillhavedifferentangularbeamdivergencesand,thus,differentastigmaticdistances.Ifyouhaveaccesstoseveraldifferentlasertypes(gainguided,indexguided),itmaybeinstructivetocharacterizetheirastigmaticdistances.
1.5.3FrequencyCharacteristicsofDiodeLasers
Inordertostudyfrequencycharacteristicsofadiodelaser,wewillemployaMichelsoninterferometertoconvertfrequencyvariationsintointensityvariations.Anexperimentalsetupforexaminingfrequencyand,also,amplitudecharacteristicsofalasersourceisillustratedinFigure1.10.
1.Inthisexperiment,itisverypossiblethatlightmaybecoupledbackintothelaser,thereby,destabilizingit.Anopticalisolator,therefore,willberequiredtominimizefeedbackintothelaser.Asimpleisolatorwillbeconstructedusingapolarizingbeamsplittercubeandaquarterwaveplate.Weorientthequarterwaveplatesuchthatthelinearlypolarizedlightfromthepolarizerisincidentat45°totheprincipalaxesofthequarterwaveplatesothatlightemergingfromthequarterwaveplateiscircularlypolarized.Reflectionschangeleft-circularpolarizedlightintoright-circularorviceversasothatreflectedlightreturningthroughthequarterwaveplatewillbelinearlypolarizedand90°rotatedwithrespecttothepolarizertransmissionaxis.Thepolarizer,then,greatlyattenuatesthereturnbeam.
Inassemblingtheisolator,makesurethatthelaserjunction(xzplaneinFigure1.1)isparalleltothesurfaceofthetable(thenotchonthelaserdiodecasepointsupward)andthebeamiscollimatedbythelens.Thelaserbeamshouldbeparalleltothesurfaceoftheopticaltable.Setthepolarizerandquarterwave(λ/4)plateinplace.Placeamirroraftertheλ/4plateandrotatetheλ/4platesothatmaximumrejectedsignalisobtainedfromtherejectionportofthepolarizingbeamsplittercubeasshowninFigure1.11.Whenthissignalismaximized,thefeedbacktothelasershouldbeataminimum.
2.ConstructtheMichelsoninterferometerasshowninFigure1.12.Placethebeamsteeringassembly(BSA-II)ontheopticaltableandusethereflectedbeamfromthemirrortoadjustthequarterwaveplateorientation.Setthecubemount(CM)ontheopticalbreadboard,placeadoublesidedpieceofadhesivetapeonthemount,andputthenonpolarizingbeamsplittercube(05BC16NP.6)ontheadhesivetape.Next,placetheotherbeamsteeringassembly(BSA-I)andthedetectormount(M818BB)inlocationandadjustthemirrorssothatthebeamsreflectedfromthetwomirrorsoverlapatthedetector.
Whenlongpathlengthmeasurementsaremade,theinterferometersignalwilldecreaseordisappearifthelasercoherencelengthislessthanthetwowayinterferometerpathimbalance.Ifthisisthecase,shortentheinterferometeruntilthesignalreappears.Ifthisdoesnotwork,thencheckthelaserforsingle-modeoperationbylookingforthefringepatternonacardorbyscanningthepiezoelectrictransducerblock(PZB)inBSA-IIandmonitoringthedetectoroutputwhichshouldbesinusoidalwithPZBscandistance.Ifthelaserdoesnotappeartobeoperatingsingle-mode,realigntheisolatorand/orchangethelaseroperatingpointbyvaryingthebiascurrent.Additionally,toensuresingle-modeoperation,thelasershouldbeDCbiasedabovethresholdbeforeapplyingACmodulation.Overdrivingthelasercanalsoforceitintomultimodeoperation.
3.TheMichelsoninterferometerhasthepropertythatdependingonthepositionofthemirrors,lightmaystronglycouplebacktowardthelaserinputport.Inordertofurtherreducethefeed-back,slightlytiltthemirrorsasillustratedinFigure1.13.Ifstillunabletoobtainsingle-modeoperation,replacethelaserdiode.
4.Placeawhitecardinfrontofthedetectorandobservethefringepatternwiththeinfraredimager.Slightlyadjustthemirrorstoobtainthebestfringepattern.Trytoobtainonebroadfringe.
5.Positionthedetectoratthecenterofthefringepatternsothatitinterceptsnomorethanaportionofthecenteredpeak.
6.Byapplyingavoltagetothepiezoelectrictransducerblockattachedtothemirror(partPZB)inonearmoftheinterferometer(i.e.BSA-II),maximizetheoutputintensity.Theoutputshouldbestableoveratimeperiodofaminuteorso.Ifitisnot,verifythatallcomponentsarerigidlymounted.Iftheyare,thenroomaircurrentsmaybedestabilizingthesetup.Inthiscase,placeabox(cardboardwilldo)overthesetuptopreventaircurrentsfromdisturbingtheinterferometersetup.
7.Placetheinterferometerinquadrature(pointofmaximumsensitivitybetweenmaximumandminimumoutputsoftheinterferometer)byvaryingthevoltageonthePZB.
8.Theoutputsignaloftheinterferometerduetofrequencyshiftingofthelaserisgivenby∆I∝∆φ=2π/c∆L∆νwhere∆Listhedifferenceinpathlengthbetweenthetwoarmsoftheinterferometerand∆νisthefrequencysweepofthelaserthatisinducedbyapplyingacurrentmodulation.RememberthatinaMichelsoninterferometer∆Listwicethephysicaldifferenceinlengthbetweenthearmssincelighttraversesthislengthdifferenceinbothdirections.∆Lvaluesof3-20cmrepresentconvenientlengthdifferenceswiththelarger∆Lyieldinghigheroutputsignals.
Beforeweapplyacurrentmodulationtothelaser,notethattheinterferometeroutputsignal,∆I,shouldbemadelargerthanthedetectororlasernoiselevelsbyproperchoiceof∆Landcurrentmodulationamplitudedi.AlsorecallfromSection1.3thatwhenthediodecurrentismodulatedsoisthelaserintensityaswellasitsfrequency.Wecanmeasurethelaserintensitymodulationbyblockingonearmoftheinterferometer.Thiseliminatesinterferenceandenablesmeasurementoftheintensitymodulationdepth.We,then,subtractthisvaluefromthetotalinterferometeroutputtodeterminethetruedI/diduetofrequencymodulation.Applyalowfrequency,smallcurrentmodulationtothelaserdiode.Notethatwhentheproperrangeisbeingobserved
and
fortheamplitudechangeonly.Recalling
,,
or
whereKisadetectorresponseconstantdeterminedbyvarying∆L.
9.Withtheinterferometeranddetectionsystemproperlyadjusted,varythedrivefrequencyofthelaserandobtainthefrequencyresponseofthelaser(Figure1.4or1.10a).Youwillneedtorecordtwosetsofdata:(i)themodulationdepthoftheinterferometeroutputasafunctionoffrequency,and(ii)thelaserintensitymodulationdepth.ThedifferenceofthetwosetsofcollecteddatawillprovideanestimateoftheactualdI/diduetofrequencymodulation.Alsonotethatifthecurrentmodulationissufficientlysmallandthepathmismatchsufficientlylarge,thelaserintensitymodulationmaybenegligible.YoumayneedtoactivelykeeptheinterferometerinquadraturebyadjustingthePZBvoltage.
Makeanynecessaryfunctiongeneratoramplitudeadjustmentstokeepthecurrentmodulationdepthofthelaserconstantasyouvarythefrequency.Thisisbecausethefunctiongenerator/drivercombinationmaynothaveaflatfrequencyresponse.Theeffectofthisisthatthecurrentmodulationdepthdiisnotconstantandvarieswithfrequency.Sotoavoidunnecessarycalculations,monitorthecurrentmodulationdepthbyconnectingtheLASERMONITORconnectoronthelaserdiodedriversystemtoanoscilloscopeandkeepthemodulationdepthconstantbyadjustingtheamplitudeoftheappliedsinusoidalwaveasafunctionoffrequency.Recordthefrequencyforyourlaseratwhichthethermalcontributiontodν/dibeginstobecomenegligibleanddν/didropsoff(seeSection1.3).
10.Keepingtheaboveequationsinmind,wewill,now,measuretheFMchirpcharacteristicsofthelaser.Ataconstantcurrentmodulationfrequency(chooseamodulationfrequencywheredν/divariesrapidly,i.e.wheretheslopeofyourgraphfromStep9,whichshouldbesimilartoFigure1.10a,ismaximum),varythecurrentmodulationdepthdifordifferentlaserbiaslevelsandderiveacurvesuchastheoneinFigure1.10b.Theoutputdνshouldnotvarysignificantlyexceptaroundthresholdandathighcurrents.
Caution
Donotexceedthespecifieddrivecurrents/outputpowerratingsofthediodeoritmaybedamaged.
11.Thephasenoisecharacteristicbehavior(Section1.4)asafunctionofinterferometerpathlengthimbalance∆Lmaybedeterminedbyinducingphasenoisethroughapplicationoflasercurrentmodulation.Makesurethattheinterferometerisinquadrature.
Setthelaserdiodecurrentabovethreshold,applyasmallcurrentmodulation,andfixthemodulationfrequencyatadesiredvalue.Convenientfrequenciesmayinclude50Hz,2kHz,and50kHz(seeReference1.5).Monitorthedetectoroutputwithaspectrumanalyzeroranoscilloscopeandrecordthepeak-to-peakoutputintensityatinterferometerquadrature.YoumayaccomplishthisbymanuallysweepingthePZBvoltagetocauseaminimumofπ/2phaseshift,recordingthemaximumpeak-to-peakintensityasafunctionofpathlengthimbalance.Itisimportanttoensurethatinstrumentnoiseisbelowthesignallevelsexpectedanditisassumedthatsingle-modeoperationofthelaserismaintained.CurvessimilartoFigure1.10cshouldbeobtained.
1.5.4AmplitudeCharacteristicsofDiodeLasers
ThemeasurementsoftheintensitycharacteristicsaretakenbyplacingthedetectorbeforetheinterferometerasinFigure1.10orbyblockingonemirrorintheinterferometer.Again,thelasermustbeoperatedsingle-modedwithminimumfeedbackorthenoiselevelandfunctionalitywilldrasticallychange.Therelativeintensitynoise(RIN)isdefinedas20log(dI/I)wheredIistheRMSintensityfluctuationssothatfordI~10-4,theRINis-80dB.Normally,thesemeasurementsaremadewithaspectrumanalyzeranda1Hzbandwidth.
WhenmakingRINmeasurements,electronicandphotodetectorshotnoisemustbebelowtheRINlevels.(OPTIONAL)Youmaydeterminetheshotnoiseusinganincoherentsource(e.g.lamp)withanintensitylevelsimilartothatofthelaser.Theresultantfrequencyspectrumofnoisewiththelightsourceexcitedgivesameasureoftheshotnoiselevelwhichshouldbeadjustedtobeatleast10dBgreaterthanelectronicnoiselevels.ThemeasuredshotnoiseshouldbecheckedwithEquation0.47.
1.Varythelaserdrivecurrentfrombelowthresholdt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 巧媳妇工程课件
- 工程造价写课件赚钱方法
- 工程资料编制课件
- 2025年度二手图书买卖合同
- 二零二五年度某工程施工合同终止及后续责任承担函
- 二零二五年车位购置合同标准文本
- 狗的自述500字(7篇)
- 工程结算培训课件
- 菏泽国花高三数学试卷
- 湖北高考13数学试卷
- 防疾病安全知识
- 食品包装注塑产品安全方案
- ISO9001培训教育课件
- 数学第五章一元一次方程单元测试卷 2024-2025学年人教版七年级数学上册
- 病原生物学-教程-第十六章-衣原体
- 中医内科学方剂歌诀
- 智能实时音视频传输网络的应用场景与需求
- 模块10 焊接接头的强度计算《焊接科学与工程》教学课件
- 高级半导体分立器件和集成电路装调工技能鉴定考试题库(含答案)
- 2024年工会专业知识考试题库及答案
- 宁夏回族自治区吴忠市五年级数学期末评估试卷详细答案和解析
评论
0/150
提交评论