




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线知识点总结最终要学习圆锥曲线学问点了,高二数学本身的学问体系而言,它主要是对数学学问的深化学习和新学问模块的补充。圆锥曲线学问点总结有哪些你知道吗?一起来看看圆锥曲线学问点总结,欢迎查阅!
圆锥曲线学问点大全
圆锥曲线的应用
一、考纲指要
1.会按条件建立目标函数讨论变量的最值问题及变量的取值范围问题,留意运用数形结合、几何法求某些量的最值.
2.进一步巩固用圆锥曲线的定义和性质解决有关应用问题的方法.
二、命题落点
1.考查地理位置等特别背景下圆锥曲线方程的应用,修建大路费用问题转化为距离最值问题数学模型求解,如例1;
2.考查直线、抛物线等基本学问,考查运用解析几何的方法分析问题和解决问题的力量,如例2;
3.考查双曲线的概念与方程,考查考生分析问题和解决实际问题的力量,如例3.
例1:(2024・福建)如图,B地在A地的正东方向4km处,C地在B地的北偏东300方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上选一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建大路的费用分别是a万元/km、2a万元/km,那么修建这两条大路的总费用最低是()
A.(2-2)a万元B.5a万元
C.(2+1)a万元D.(2+3)a万元
解析:设总费用为y万元,则y=a・MB+2a・MC
∵河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.,
∴曲线PG是双曲线的一支,B为焦点,且a=1,c=2.
过M作双曲线的焦点B对应的准线l的垂线,垂足为D(如图).由双曲线的其次定义,得=e,即MB=2MD.
∴y=a・2MD+2a・MC=2a・(MD+MC)≥2a・CE.(其中CE是点C到准线l的垂线段).
∵CE=GB+BH=(c-)+BC・cos600=(2-)+2×=.∴y≥5a(万元).
答案:B.
例2:(2024・北京,理17)如图,过抛物线y2=2px(p0)上肯定点P(x0,y0)(y00),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).
(1)求该抛物线上纵坐标为的点到其焦点F的距离;
(2)当PA与PB的斜率存在且倾斜角互补时,
求的值,并证明直线AB的斜率是非零常数.
解析:(1)当y=时,x=.
又抛物线y2=2px的准线方程为x=-,由抛物线定义得,
所求距离为.
(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.
由y12=2px1,y02=2px0,相减得:,
故.同理可得,
由PA、PB倾斜角互补知,即,
所以,故.
设直线AB的斜率为kAB,由,,相减得,所以.将代入得,
所以kAB是非零常数.
例3:(2024・广东)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)
解析:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020).
设P(x,y)为巨响发生点,由A、C同时听到巨响声,得|PA|=|PC|,
故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|-|PA|=340×4=1360.
由双曲线定义知P点在以A、B为焦点的双曲线上,
依题意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402,
故双曲线方程为.用y=-x代入上式,得x=±680,
∵|PB||PA|,∴x=-680,y=680,即P(-680,680),故PO=680.
答:巨响发生在接报中心的西偏北450距中心680m处.
1.圆锥曲线实际应用问题多带有肯定的实际生活背景,考生在数学建模及解模上均不同程度地存在着肯定的困难,回到定义去,将实际问题与之相互联系,敏捷转化是解决此类难题的关键;
2.圆锥曲线的定点、定量、定值等问题是隐蔽在曲线方程中的固定不变的性质,考生往往只能浮于表面分析问题,而不能总结出其实质性的结论,致使问题讨论徘徊不前,此类问题解决需留意可以从特别到一般去逐步归纳,并设法推导论证.
1.(2024・重庆)若动点()在曲线上变化,则的最大值为()A.B.
C.D.2
2.(2024・全国)设,则二次曲线的离心率的取值范围为()A.B.C.D.
3.(2024・精华训练三模)一个酒杯的轴截面是一条抛物线的一部分,它
的方程是x2=2y,y∈在杯内放入一个清洁球,要求清洁球能
擦净酒杯的最底部(如图),则清洁球的最大半径为()
A.B.1C.D.2
4.(2024・泰州三模)在椭圆上有一点P,F1、F2是椭圆的左右焦点,△F1PF2为直角三角形,则这样的点P有()
A.2个B.4个C.6个D.8个
5.(2024・湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.
6.(2024・上海)教材中坐标平面上的直线与圆锥曲线两章内容体现出解析几何的本质是.
7.(2024・浙江)已知双曲线的中心在原点,
右顶点为A(1,0),点P、Q在双曲线的右支上,
点M(m,0)到直线AP的距离为1,
(1)若直线AP的斜率为k,且|k|?,
求实数m的取值范围;
(2)当m=+1时,△APQ的内心恰好是点M,
求此双曲线的方程.
8.(2024・上海)如图,直线y=x与抛物
线y=x2-4交于A、B两点,线段AB的垂直平
分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方
(含A、B)的动点时,求ΔOPQ面积的最大值.
9.(2024・北京春)2024年10月15日9时,神舟五号载人飞船放射升空,于9时9分50秒精确 进入预定轨道,开头巡天飞行.该轨道是以地球的中心为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A距地面200km,远地点B距地面350km.已知地球半径R=6371km.
(1)求飞船飞行的椭圆轨道的方程;
(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推动舱分别,结束巡天飞行,飞船共巡天飞行了约,问飞船巡
天飞行的平均速度是多少km/s?(结果精确
到1km/s)(注:km/s即千米/秒)
关于双曲线学问点总结
双曲线方程
1.双曲线的第肯定义:
⑴①双曲线标准方程:.一般方程:.
⑵①i.焦点在x轴上:
顶点:焦点:准线方程渐近线方程:或
ii.焦点在轴上:顶点:.焦点:.准线方程:.渐近线方程:或,参数方程:或.
②轴为对称轴,实轴长为2a,虚轴长为2b,焦距2c.③离心率.④准线距(两准线的距离);通径.⑤参数关系.⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:
构成满意(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.
⑸共渐近线的双曲线系方程:的渐近线方程为假如双曲线的渐近线为时,它的双曲线方程可设为.
例如:若双曲线一条渐近线为且过,求双曲线的方程?
解:令双曲线的方程为:,代入得.
⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.
⑺若P在双曲线,则常用结论1:P到焦点的距离为m=n,则P到两准线的距离比为m︰n.
简证:=.
常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.
双曲线方程学问点在高考中属于比较重要的考察点,盼望考生仔细复习,深化把握。
高二数学圆锥公式学问点
⑴集合与简易规律:集合的概念与运算、简易规律、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面对量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、肯定值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0
抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c_h
正棱锥侧面积S=1/2c_h正棱台侧面积S=1/2(c+c)h
圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi_r2
圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h
斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长
柱体体积公式V=s_h圆柱体V=p_r2h
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1_X2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac0注:方程有两个不等的实根
b2-4ac0注:方程没有实根,有共轭复数根
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子会员转让协议书
- 不与退货协议书范本
- 2025年03月江苏省省属事业单位统一人员(710人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月山东省社会工作联合会公开招聘4人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月天津和平区司法医学鉴定中心法医助理岗(北方辅医外包项目)公开招聘笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 太阳能热发电系统项目风险分析和评估报告
- 大理白族自治州洱源县2025届六年级下学期小升初真题数学试卷含解析
- 石家庄人民医学高等专科学校《人体影像解剖学实验》2023-2024学年第二学期期末试卷
- 怀化学院《化工制图与AutoCAD》2023-2024学年第二学期期末试卷
- 郑州职业技术学院《工程岩体力学》2023-2024学年第二学期期末试卷
- 榜样的力量有一种力量叫榜样的力量课件
- 防控医疗纠纷课件
- 陕西省扶风县法门小学-小学班主任带班方略【课件】
- 2024年司法考试完整真题及答案
- 2016-2023年南通师范高等专科学校高职单招(英语/数学/语文)笔试历年考点试题甄选合集含答案解析
- DB12T 1111 2021 城镇燃气供气设施运行管理规范
- 面试人员测评打分表
- 大学本科毕业设计毕业论文-网上药店管理系统的设计与实现
- 《毕业生登记表》填写模板
- 初中物理中考实验操作培训
- 风电场建设项目绿色施工方案
评论
0/150
提交评论