河南省商丘市永城乡天齐中学高二数学文测试题含解析_第1页
河南省商丘市永城乡天齐中学高二数学文测试题含解析_第2页
河南省商丘市永城乡天齐中学高二数学文测试题含解析_第3页
河南省商丘市永城乡天齐中学高二数学文测试题含解析_第4页
河南省商丘市永城乡天齐中学高二数学文测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商丘市永城乡天齐中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示的程序框图,如果输入三个实数,,,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的(

)A.

B.

C.

D.

参考答案:B2.抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,圆M与y轴相切,过原点O作倾斜角为的直线m,交直线l于点A,交圆M于不同的两点O、B,且|AO|=|BO|=2,若P为抛物线C上的动点,则的最小值为()A.﹣2 B.2 C. D.3参考答案:B【考点】抛物线的简单性质.【分析】求出p的值,从而求出抛物线方程,求出圆心和半径可求出⊙M的方程,表示出,然后根据点在抛物线上将y消去,求关于x的二次函数的最小值即可;【解答】解:因为=OA?cos=2×=1,即p=2,所以抛物线C的方程为y2=4x,设⊙M的半径为r,则=2,所以⊙M的方程为(x﹣2)2+y2=4设P(x,y)(x≥0),则=x2﹣3x+2+y2=x2+x+2,所以当x=0时,有最小值为2故选:B【点评】本题主要考查了圆的方程和抛物线方程,以及向量数量积的最值,属于中档题.3.若y=,则y′=()A. B.C. D.参考答案:A【考点】导数的乘法与除法法则.【分析】因为的导数为,对于函数的导数,直接代入公式计算即可.【解答】解:∵,∴y′==故选A4.已知曲线上一点,则A处的切线斜率等于(

)A.9 B.1 C.3 D.2参考答案:A【分析】求出函数的导数,然后在导数中令,可得出所求切线的斜率.【详解】对函数求导得,故该曲线在点处的切线斜率为,故选:A.【点睛】本题考查导数的几何意义,考查利用导数求切线的斜率,解题时要熟知导数的几何意义,考查对导数概念的理解,属于基础题.5.i是虚数单位,计算i+i2+i3=()A.-1B.1

C.-i

D.i参考答案:A略6.夏季高山上气温从山脚起每升高100m降低0.7℃,已知山顶的气温是14.1℃,山脚的气温是26℃.那么,此山相对于山脚的高度是()A.1500m

B.1600m

C.1700m

D.1800m参考答案:C7.某建筑由相同的若干个房间组成,该楼的三视图如右图所示,最高一层的房间在什么位置(

A.左前 B.右前C.左后 D.右后参考答案:C【知识点】空间几何体的三视图与直观图【试题解析】因为由三视图可看出最高一层应在左后方所以,C正确

故答案为:C8.已知二次函数的导数为,,对于任意实数,有,则的最小值为

(

)A.

B.

C.

D.参考答案:C9.函数和在同一直角坐标系下的图像大致是(

)参考答案:D10.一个空间几何体的正视图和侧视图都是边长相等的正方形,俯视图是一个圆,那么这个几何体是(

).

A.棱柱

B.圆柱

C.圆台

D.圆锥参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)=loga(x+1)(a>0,a≠1)的定义域和值域都是[0,1],则a=________.参考答案:2f(x)=loga(x+1)的定义域是[0,1],∴0≤x≤1,则1≤x+1≤2.当a>1时,0=loga1≤loga(x+1)≤loga2=1,∴a=2;当0<a<1时,loga2≤loga(x+1)≤loga1=0,与值域是[0,1]矛盾.综上,a=2.12.已知椭圆的左右焦点分别为、,经过的直线交椭圆于、两点,则△的周长为

.参考答案:1313.为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有;①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等.参考答案:④,⑤,⑥【考点】收集数据的方法.【分析】2000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄是一个样本,样本容量为100,这个抽样方法可采用按年龄进行分层抽样,每个运动员被抽到的概率相等.【解答】解:④,⑤,⑥正确,∵2000名运动员的年龄情况是总体;每个运动员的年龄是个体,所抽取的100名运动员的年龄是一个样本,样本容量为100,这个抽样方法可采用按年龄进行分层抽样,每个运动员被抽到的概率相等.故答案为:④,⑤,⑥.14.求椭圆9x2+25y2=900的长轴和短轴的长、离心率、焦点和顶点的坐标.参考答案:略15.等比数列{an}的前n项和是Sn,若,则{an}的公比等于________.参考答案:16.若f(x)=在(-1,+∞)上满足对任意x1<x2,都有f(x1)>f(x2),则实数a的取值范围是

.参考答案:

17.过点(2,1)且与点(1,3)距离最大的直线方程是

.参考答案:x﹣2y=0【考点】确定直线位置的几何要素.【分析】过点A(2,1)且与点B(1,3)距离最大的直线l满足:l⊥AB.则kl?kAB=﹣1,即可得出.【解答】解:过点A(2,1)且与点B(1,3)距离最大的直线l满足:l⊥AB.∴kl?kAB=﹣1,∴kl=.∴直线l的方程为:y﹣1=(x﹣2),化为x﹣2y=0.故答案为:x﹣2y=0.【点评】本题考查了相互垂直的直线斜率之间的关系、点斜式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)计算:(1)

(2)参考答案:19.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的极值.参考答案:(Ⅰ),,.故切线的斜率,由直线的点斜式方程可得,化简得;(Ⅱ)由(Ⅰ),得.令,得或.当变化时,,的变化情况如下表:1+0-0+极大值极小值综上,的极大值为,的极小值为.20.已知抛物线的焦点为F,准线为,点,A在上的射影为B,且是边长为4的正三角形.(1)求p;(2)过点F作两条相互垂直的直线与C交于P,Q两点,与C交于M,N两点,设的面积为的面积为(O为坐标原点),求的最小值.参考答案:(1)2;(2)16.【分析】(1)设准线与轴的交点为点,利用解直角三角形可得.(2)直线,联立直线方程和抛物线方程后利用韦达定理可用关于的关系式表示,同理可用关于的关系式表示,最后用基本不等式可求的最小值.【详解】(1)解:设准线与轴交点为点,连结,因为是正三角形,且,在中,,所以.(2)设,直线,由知,联立方程:,消得.因为,所以,所以,又原点到直线的距离为,所以,同理,所以,当且仅当时取等号.故的最小值为.【点睛】圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以为斜率或点的横、纵坐标等.而目标函数的最值可以通过基本不等式或导数等求得.21.(本小题满分10分)已知,.(I)若,求;(II)若R,求实数的取值范围.参考答案:略22.给定椭圆C:=1(a>b>0),称圆x2+y2=a2+b2为椭圆C的“伴随圆”,已知椭圆C的短轴长为2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l与椭圆C交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=时,求△AOB面积的最大值.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.【分析】(Ⅰ)由题意得,根据离心率公式以及b=1,知a2=3,由此能求出椭圆C的方程.(Ⅱ)分类讨论,当CD⊥x轴时,当CD与x轴不垂直时,设直线CD的方程为y=kx+m,则韦达定理以及弦长公式和基本不等式求出弦长的最大值,由此能求出△AOB的面积取最大值.【解答】解:(Ⅰ)由题意得,e2==1﹣=,又∵b=1,∴a2=3,∴椭圆C的方程为+y2=1,(Ⅱ)“伴随圆”的方程为x2+y2=4,①当CD⊥x轴时,由|CD|=,得|AB|=.②当CD与x轴不垂直时,由|CD|=,得圆心O到CD的距离为.设直线CD的方程为y=kx+m,则由=,得m2=(k2+1),设A(x1,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论