




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杜集中心学校小组自主六环节导学案温馨提示:1、课前,你准备好了本节课所用的课本、笔记本及学习用具了吗?2、快要上课了,你将心情平静了吗?3、要上课了,请你带着你的自信和微笑走进我们的课堂,和老师一起开启学习之旅吧,相信你会是最棒的,课堂会因你而精彩!教师寄语:不登高山不知山之高也,不临深溪不知地之厚也。全等三角形的判定(SAS)杜集中心学校.八年级.数学组杜集中心学校小组自主六环节导学案导入课题复习旧课1.什么是全等三角形?2.全等三角形的判定方法-sss的内容是什么?杜集中心学校小组自主六环节导学案画△ABC,使AB=3cm,AC=4cm。画法:2.在射线AM上截取AB=3cm3.在射线AN上截取AC=4cm这样画出来的三角形与同桌所画的三角形进行比较,它们互相重合吗?若再加一个条件,使∠A=45°,画出△ABC1.画∠MAN=45°4.连接BC则△ABC就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重合吗?画一画学生自学再任意画一个△ABC和△DEF,使AB=DE,AC=DF,∠A=∠D,把画好的△ABC和△DEF比较,它们全等吗?ABCDEF△ABC≌△DEF杜集中心学校小组自主六环节导学案由前边的作图比较过程,我们可以得出什么结论?用符号语言表达为:在△ABC与△DEF中AB=DE∠A=∠DAC=DF∴△ABC≌△DEF(SAS)ABCDEF两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”杜集中心学校小组自主六环节导学案例2、如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离.为什么?分析:如果能证明△ABC≌△DEC
,就可以得出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE.如果能得出∠ACB=∠DCE,△ABC和△DEC就全等了合作探究ABCDE证明:在△ABC和△DEC中CA=CD∠ACB=∠DCECB=CE∴△ABC≌△DEC(SAS)∴AB=DE已知:如图,AB=CB,∠ABD=∠CBD。问AD=CD,BD平分∠ADC吗?ABCD例题推广证明:在△ABD与△CBD中AB=CB∠ABD=∠CBDBD=BD∴△ABD≌△CBD(SAS)∴AD=CD∠ADB=∠CDB即BD平分∠ADC
因为全等三角形的对应角相等,对应边相等,所以,证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明两个三角形全等来解决。由前边两个题目可以看出:杜集中心学校小组自主六环节导学案探究两边和它们的夹角对应相等的两个三角形全等。由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?动画演示杜集中心学校小组自主六环节导学案这说明:有两边和其中一边的对角对应相等的两个三角形不一定全等。杜集中心学校小组自主六环节导学案测评1、如图,B点在A点的正北方向。两车从路段AB的一端A出发,分别向东、向西进行相同的距离,到达C、D两地。此时C,D到B的距离相等吗?为什么?BDAC【证明】∵在△BAD和△BAC中,BA=BA∠BAD=∠BACAD=AC则△BAD≌△BAC(SAS).即BD=BC2、如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠DADBEFC【证明】∵BF=BE+EFCE=CF+FE
而BE=CF∴BF=CE在△ABF和△DCE中,BF=CE∠B=∠CAB=DC则△BAD≌△BAC(SAS).即∠A=∠D课堂小结:2.用尺规作图:已知两边及其夹角的三角形1.三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有机化学 有机上期末试卷(含答案)学习资料
- 2025风力发电项目合同
- 山东省东营市利津县2024-2025学年下学期期中考试七年级道德与法治试题及答案 山东省东营市利津县2024-2025学年下学期期中考试七年级道德与法治试题
- 2025粮食收购销售合同协议书范本
- 2025办公室改造工程(承包)合同承包电路改造合同
- 2025综合装修合同范本
- 2025劳动合同集锦范文
- 2025烘焙技术合作协议合同
- 2025BT项目合同范本
- 2025年企业合同模板集锦
- (正式版)JTT 421-2024 港口固定式起重机安全要求
- 【中国信科-中信科移动】2023星地融合通信白皮书
- 脑电图判读异常脑电图
- 人体所需的七大营养素(卓越)
- 《小学生预防溺水安全教育班会》课件
- 传统园林技艺智慧树知到期末考试答案2024年
- 直播中的礼仪与形象塑造
- 2024年八年级数学下册期中检测卷【含答案】
- 老年人中医健康知识讲座总结
- 海南声茂羊和禽类半自动屠宰场项目环评报告
- 《民法典》合同编通则及司法解释培训课件
评论
0/150
提交评论