回转式空气预热器热风清洗防堵控制技术_第1页
回转式空气预热器热风清洗防堵控制技术_第2页
回转式空气预热器热风清洗防堵控制技术_第3页
回转式空气预热器热风清洗防堵控制技术_第4页
回转式空气预热器热风清洗防堵控制技术_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

回转式空气预热器热风清洗防堵控制技摘要:电站锅炉脱硝一般采用氨气作为触媒,过量逃逸的氨气会和烟气中的硫酸产生化学反应,生成液态的硫酸氢铵会粘结飞灰形成堵塞物,导致回转式空气预热器的堵塞,是目前燃煤机组锅炉普遍存在的问题。关键词:空气预热器;防堵控制;热风清洗;回转式空气预热器;硫酸氢铵1存在的问题针对部分大型电站锅炉进行脱硝改造后空气预热器的堵塞情况,分析空气预热器堵塞的原因,介绍一种新型的热风防堵控制方法及其实施情况,为其他类似电厂空气预热器的堵塞问题提供参考。SO2会被催化为SO3,电厂安装的SCR系统投用后也会增加烟气中SO3的总量。在SCR反应器中SO2被氧化的比例根据催化剂的不同,SO3浓度也相应增加。烟气中存在的SO3造成空气预热器堵塞的原因主要有2类。a.空气预热器冷段壁面温度低于烟气中SO3的露点温度,出现了硫酸(HSO)结露的情况,结1号、2号锅炉由于脱硝入口氮氧化物高,脱硝喷氨量较大,产生硫酸氢铵(NHHSO)引起空气预露的硫酸腐蚀受热面表面,使沾灰的情况加剧,造成空气预热器堵塞。热器传热元件堵塞现象严重,造成了引、送风机耗电率升高,堵塞严重时限制了机组带负荷能力,强化蒸汽吹灰后引风机空气预热器传热元件吹损等异常问题。2空气预热器堵塞原因电站锅炉燃煤中含硫量大小不一,燃烧中会产生SO3,SO3的量和煤质含硫量成正比,随着煤中含硫量的增加SO3浓度也相应增加。SCR中的b.烟气中SO3造成的另外一种形式的空气预热器堵塞与一种化学物质硫酸氢铵(NH4HSO4,或称ABS)有关。在146〜207°C,硫酸氢铵为高粘性液体,易粘附在空气预热器的中低温换热面,粘附烟气中的飞灰,恶化空气预热器堵塞;低于146C时,硫酸氢铵为固体,影响较小。目前电厂通常采用的办法主要有以下几种:从燃烧侧着手,增开燃尽风降低NOx,减轻SCR压力,减少氨逃逸;加高空气预热器冷端换热元件高度,改造封闭波形;严重时采用不间断长时吹灰;影响机组运行时停机冲洗。3热风清洗技术目前电厂常用的堵塞处理方案虽能对空气预热器堵塞有一定程度的缓解,但治标不治本,无法根除空气预热器堵塞问题,这会增加锅炉的运行负担,增加三大电机耗电量,影响电厂安全经济运行。因此针对空气预热器运行特性,提出使用热风清洗技术,将热风(约350C以上)引至换热片即将进入烟气仓的区域,逆向加热蓄热元件,一方面高温热风可气化冷端生成的NH4HSO4,另一方面可有效提高该最冷区域换热片的温度,从而抑制NH4HSO4生成的同时防止硫酸蒸汽凝结,此外,高压热风对蓄热元件亦存在吹扫作用,以此可有效解决空气预热器换热面腐蚀及堵塞的问题。1技术原理热风清洗技术的原理为:根据硫酸氢铵的物理特性,当温度上升时,硫酸氢铵产生相变,液态转化为气态,可以随热风带走,不会粘结在蓄热元件上。所以利用空气预热器出口热一次风,在空气预热器冷端巧妙进行设计,隔离出一个清洗区域,引入高压热风到清洗分仓中,将分仓内的温度场迅速提高,使飞灰中的硫酸氢铵由液态迅速转化为气态,使飞灰无粘结基础随热风带走,避免液态硫酸氢铵的生成,从而改善堵塞问题,其原理与热风再循环技术具有相似性】3],但本质不同,热风再循环的机理是提高金属壁温,本技术机理是通过高流速置换掉转子内的携带漏风,同时迅速提升飞灰中硫酸氢铵的气化速度。3.2总体方案根据空气预热器的运行特性,在空气预热器出口的热一次风管道上抽取热风,进入冷端加热二次风侧低温区3.8。的清洗分仓(转子总分仓为360°),提高3.8°清洗分仓内温度场的温度到硫酸氢铵结露温度(按207°C)以上,使硫酸氢铵在此区域内迅速由液态转化为气态,能够使飞灰无粘附基础随热风带走,在冷端3.8。清洗分仓通过新增扇形板进行隔离,只流通高温的热一次风,热端出口一、二次风道布置同常规三分仓预热器,不需要改动。由于预热器出口热一次风压力高于冷二次风入口压力,有压差作为动力来源,根据电厂项目实际情况,在额定负荷下,一次热风出口压力约6340Pa,二次冷风压力为2580Pa,压差约3760Pa,考虑到热风清洗系统阻力,仍有约3kPa以上的差压作为动力来源。热风从热一次风抽取出来,从冷端清洗风仓进入预热器,高速流经受热面气化硫酸氢铵后,混入热二次风直接排走,解决空气预热器堵塞问题。空气预热器热风自清洗方案见图1。3性能计算将烟气侧、一次风侧、二次风侧、清洗分仓每个区域内细分成11个小温度区域,采用微积分的办法结合对流换热的计算方法,将初始入口风温由常规的20C,更改为不同负荷下的不同参数。根据热力学原则,热风进入预热器后先对飞灰和格仓内的携带风进行同种介质之间的热传导,其次对流经受热面低温区的搪瓷钢板换热。从计算结果可以看出,高温的热风进入冷端后,风温会逐渐降低,在不同负荷下,在对应受热面不同高度(高负荷800〜900mm、低负荷1000〜1300mm)范围,热风温度降到最低点,而此处恰恰是硫酸氢铵液态结露最严重的区域,因此设计的原则是务必保证此处的热风温度高于硫酸氢铵结露温度(按207C)。4热风清洗技术应用及效果1技术应用设计说明:本次计算按3.8°分仓面积设置清洗分仓,清洗分仓设置在二次风侧靠紧一次风桁架流场模拟位置,新加一个隔离风仓出来,热端不需做任何改动,从温度场可以看出,按最低40%负荷考虑,低温区域最低温度为207.88C,大于液态硫酸氢铵结露温度的上限(结露温度为207°C),在满负荷的时候大50°C,余量足够。4.2应用效果整个系统的设计压力为3kPa,也就是热一次风和冷二次风之间的压力差,根据现场实际情况这个压力约3.5kPa,考虑整个管道系统的沿程阻力,按3kPa来考虑设计足够,且这个压力恒定。在清洗风仓进口处通过变径将管道直径改变为500mm,这样方便现场安装布置,因为空气预热器二次风壳体空间有限,用800mm的管径直接接入循环风仓布置较困难。和喷风口的流速进行渐变过度,从而匹配,类似于虾米角管道的设计原理,局部的流速提高又能防止这个区域积灰。不用担心管道变窄会影响流量,因为压力固定的情况下,管径越小,流速越快,流量不变,气体密度越大,出口压力增加。比如6500mm处的管道流量仍为20525m3/H,流速则变为29.08m/S,而到喷风口位置的流速会进一步提高到35.264m/S。清洗风进口风道从冷二次风人孔门部位进入,从扇形板中部位置垂直向上接入清洗风仓内,不能从壳体侧面直接接入,这样可以避免电流比基本相同,说明锅炉运行环境无变化,空气侧、烟气侧效率提升说明换热效率有所提高,三大电机总电流下降14%,效果明显。原来3号锅炉一直采用烟气侧升温,提高排烟温度到接近180C的办法来蒸发硫酸氢铵防止堵塞,这种运行方法对空气预热器减速机影响较大,因为转子膨胀量高。空气预热器热风清洗改造后,不再需要进行升温运行,换热元件均无堵塞,证明了技术可靠性。使用1a时间内空气预热器维持阻力最高不超过1.3kPa,停炉期间对本系统进行检查,确认本技术可靠,性能达标。热风清洗技术的应用降低了空气预热器烟阻力,提高空气预热器换热效率,避免空气预热器堵塞严重后造成引风机喘振,被迫停炉进行空气预热器高压水冲洗事件的发生,提高了锅炉运行可靠性。相比应用前的情况,空气预热器平均阻力降低1.5kPa以上,单台锅炉1a可节电600万kWH。避免了空气预热器堵塞后加强蒸汽吹灰,造成锅炉传热元件吹损加剧问题,提高了空气预热器传热元件的工作寿命和可靠性问题。节约冲洗成本,空气预热器每次高压水冲洗费用为8万元,机组停运时间需3d,安装热风清洗系统后节约了水冲洗成本费用。5结束语通过以上分析和论述,介绍一种热风清洗防堵控制新技术,对于防止空气预热器的堵塞,解决目前市场上防堵技术的丰富性,有一定的参考作用。河北衡丰发电有限责任公司锅炉实行深度减排后,由原计划实施的SCR优化+低温氧化法方案改为SCR优化+空气预热器热风清洗方案,节约大量投资和运营成本,目前衡水电厂1—4号锅炉均安装热风清洗系统,有效解决了脱硝系统深度减排后引起的空气预热器堵塞问题,实现了锅炉环保且排放达标。参考文献:刘康.回转式空气预热器热风吹扫防堵控制技术探析[

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论