版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1..从字母中选出4个数字排成一列,其中一定要选出和,并且必须相邻(在的前面),共有排列方法()种.A. B. C. D.2.某地区空气质量检测资料表明,一天的空气质量为优良的概率是0.9,连续两天为优良的概率是0.75,已知某天的空气质量为优良,则随后一天的空气质量也为优良的概率为()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.已知等差数列的前项和,且,则()A.4 B.7 C.14 D.5.已知命题:,命题:,且是的必要不充分条件,则实数的取值范围是()A. B. C. D.6.下列5个命题中:①平行于同一直线的两条不同的直线平行;②平行于同一平面的两条不同的直线平行;③若直线与平面没有公共点,则;④用一个平面截一组平行平面,所得的交线相互平行;⑤若,则过的任意平面与的交线都平行于.其中真命题的个数是()A.2 B.3 C.4 D.57.已知是定义在上的偶函数,且在上是增函数,设,,,则,,的大小关系是()A. B. C. D.8.若A={(x,y)|y=x},,则A,B关系为()A.AB B.BAC.A=B D.AB9.对于函数,曲线在与坐标轴交点处的切线方程为,由于曲线在切线的上方,故有不等式.类比上述推理:对于函数,有不等式()A. B.C. D.10.给出下列三个命题:命题1:存在奇函数和偶函数,使得函数是偶函数;命题2:存在函数、及区间,使得、在上均是增函数,但在上是减函数;命题3:存在函数、(定义域均为),使得、在处均取到最大值,但在处取到最小值.那么真命题的个数是().A. B. C. D.11.已知函数是定义在上的偶函数,且,若对任意的,都有成立,则不等式的解集为()A. B.C. D.12.有一项活动,在4名男生和3名女生中选2人参加,必须有男生参加的选法有()种.A.18 B.20 C.24 D.30二、填空题:本题共4小题,每小题5分,共20分。13.已知非零向量,,满足:,且不等式恒成立,则实数的最大值为__________.14.命题“”为假命题,则实数的取值范围是.15.已知实数满足约束条件,则的最大值为_____________.16.正项等差数列的前n项和为,已知,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某饮料公司根据市场调查数据分析得到以下结果:如果某款饮料年库存积压率低于千分之一,则该款饮料为畅销产品,可以继续大量生产.如果年库存积压率高于千分之一,则说明需要调整生产计划.现公司2013—2018年的某款饮料生产,年销售利润及年库存积压相关数据如下表所示:年份201320142015201620172018年生产件数(千万件)3568911年销售利润(千万元)2240486882100年库存积压件数(千件)295830907580注:(1)从公司2013—2018年的相关数据中任意选取2年的数据,求该款饮料这2年中至少有1年畅销的概率.(2)公司根据上表计算出年销售利润与年生产件数的线性回归方程为.现公司计划2019年生产11千万件该款饮料,且预计2019年可获利108千万元.但销售部门发现,若用预计的2019年的数据与2013—2018年中畅销年份的数据重新建立回归方程,再通过两个线性回归方程计算出来的2019年年销售利润误差不超过4千万元,该款饮料的年库存积压率可低于千分之一.如果你是决策者,你认为2019年的生产和销售计划是否需要调整?请说明理由.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)已知点的极坐标为,求的值19.(12分)如图,在三棱锥中,,在底面上的射影在上,于.(1)求证:平行平面,平面平面;(2)若,求直线与平面所成角的正弦值.20.(12分)2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费元不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,,,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.求甲、乙两人所付的费用之和等于丙所付的费用的概率;2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.21.(12分)已知函数,求:(1)函数的图象在点处的切线方程;(2)的单调递减区间.22.(10分)已知曲线的极坐标方程为,直线,直线.以极点为原点,极轴为轴正半轴建立平面直角坐标系.(1)求直线的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于两点,直线与曲线交于两点,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
排列方法为,选C.2、A【解析】
设“某天的空气质量为优良”是事件,“随后一天的空气质量为优良”是事件,根据条件概率的计算公式,即可得出结果.【详解】设“某天的空气质量为优良”是事件,“随后一天的空气质量为优良”是事件,由题意可得,,所以某天的空气质量为优良,则随后一天的空气质量也为优良的概率为.故选A【点睛】本题主要考查条件概率,熟记条件概率的计算公式即可,属于常考题型.3、A【解析】
由三视图得出该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,在利用体积公式求解,即可得到答案.【详解】由三视图可知,该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,故该几何体的体积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.4、B【解析】
由题意利用等差数列的定义、通项公式及前项和公式,求出首项和公差的值,可得结论.【详解】等差数列的前项和为,且,,.再根据,可得,,则,故选.【点睛】本题主要考查等差数列的定义、通项公式及前项和公式,属于基础题.5、A【解析】
首先对两个命题进行化简,解出其解集,由是的必要不充分条件,可以得到关于的不等式,解不等式即可求出的取值范围【详解】由命题:解得或,则,命题:,,由是的必要不充分条件,所以故选【点睛】结合“非”引导的命题考查了必要不充分条件,由小范围推出大范围,列出不等式即可得到结果,较为基础。6、C【解析】
根据平行公理判定①的真假;根据线线位置关系,判定②的真假;根据线面平行的概念,判定③的真假;根据面面平行的性质,判断④的真假;根据线面平行的性质,判断⑤的真假.【详解】对于①,根据平行公理,平行于同一直线的两条不同的直线平行,①正确;对于②,平行于同一平面的两条不同的直线,可能平行、异面或相交;②错误;对于③,根据线面平行的概念,若直线与平面没有公共点,所以,③正确;对于④,根据面面平行的性质,用一个平面截一组平行平面,所得的交线相互平行,④正确;对于⑤,根据线面平行的性质,若,则过的任意平面与的交线都平行于,⑤正确.故选:C【点睛】本题主要考查线面关系、面面关系相关命题的判定,熟记平面的性质,平行公理,线面位置关系,面面位置关系即可,属于常考题型.7、B【解析】
由函数为的偶函数,得出该函数在上为减函数,结合性质得出,比较、、的大小关系,结合函数的单调性可得出、、的大小关系.【详解】由函数为的偶函数,且在上是增函数,则该函数在上为减函数,且有,则,,,,且,,由于函数在上为减函数,所以,,因此,,故选B.【点睛】本题考查利用函数的单调性与奇偶性比较大小,考查中间值法比较指数式和对数式的大小关系,再利用函数单调性比较函数值大小时,要结合函数的奇偶性、对称性、周期性等基本性质将自变量置于同一单调区间,结合单调性来比较大小关系,考查分析问题的能力,属于中等题.8、B【解析】
分别确定集合A,B的元素,然后考查两个集合的关系即可.【详解】由已知,故,故选B.【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,属于基础题.9、A【解析】
求导,求出函数与轴的交点坐标,再求出在交点处的切线斜率,代入点斜式方程求出切线,在与函数图像的位置比较,即可得出答案.【详解】由题意得,且的图像与轴的交点为,则在处的切线斜率为,在处的切线方程为,因为切线在图像的上方,所以故选A【点睛】本题考查由导函数求切线方程以及函数图像的位置,属于一般题.10、D【解析】对于命题1,取,,满足题意;对于命题2,取,,满足题意;对于命题3,取,,满足题意;即题中所给的三个命题均为真命题,真命题的个数是.本题选择D选项.11、D【解析】
构造函数,判断函数的单调性和奇偶性,根据其性质解不等式得到答案.【详解】对任意的,都有成立构造函数在上递增.是偶函数为奇函数,在上单调递增.当时:当时:故答案选D【点睛】本题考查了函数的奇偶性,单调性,解不等式,构造函数是解题的关键.12、A【解析】
分类:(1)人中有人是男生;(2)人都是男生.【详解】若人中有人是男生,则有种;若人都是男生,则有种;则共有种选法.【点睛】排列组合中,首先对于两个基本原理:分类加法、分步乘法,要能充分理解,它是后面解答排列组合综合问题的基础.二、填空题:本题共4小题,每小题5分,共20分。13、4.【解析】
法一:采用数形结合,可判断的终点是在以AB为直径的圆上,从而分离参数转化成恒成立问题即可得到答案.法二:(特殊值法)可先设,,,利用找出的轨迹,从而将不等式恒成立问题转化为函数问题求解.【详解】法一:作出相关图形,设,,由于,所以,且这两个向量共起点,所以的终点是在以AB为直径的圆上,可设,所以由图可知,,所,等价于,,所以,答案为4.法二:(特殊值法)不妨设,,,则,,,由于可得整理得,可得圆的参数方程为:,则相当于恒成立,即求得,即求的最大值即可,,所以,因此.故答案为4.【点睛】本题主要考查向量的相关运算,参数方程的运用,不等式恒成立问题,意在考查学生的综合转化能力,逻辑推理能力,计算能力,难度较大.14、【解析】试题分析:由题意可得命题:,为真命题.所以,解得.考点:命题的真假.15、1【解析】
作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x﹣y对应的直线进行平移并观察z的变化,即可得到z=x﹣y的最大值.【详解】作出实数x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(1,1),B(3,1),C(1,1)将直线l:z=x﹣y进行平移,当l经过点B时,目标函数z达到最大值;∴z最大值=1;故答案为1.【点睛】本题给出二元一次不等式组,求目标函数z=x﹣y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.16、2【解析】
由等差数列的通项公式求出公差,再利用等差数列前项和的公式,即可求出的值【详解】在等差数列中,所以,解得或(舍去).设的公差为,故,即.因为,所以,故,或(舍去).【点睛】本题考查等差数列通项公式与前项和的公式,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不需要调整.【解析】
(1)计算出每年的年度库存积压率,可知13,15,17,18年畅销,14,16年不畅销;列举出所有年份中任取2年的取法共15种,其中2年均为不畅销的取法仅有1种,故根据古典型及对立事件的概率可求得结果;2)数据重组后依据公式计算出新的回归直线方程,并求出2019年的年销售利润预估值;再计算出原回归直线方程的2019年的年销售利润预估值,可知两值相差3.66千万元,由此可得结论【详解】(1)公司年年度存积压率分别为:,,,,,则该饮品在13,15,17,18年畅销记为,,,,14,16年不畅销记为,任取2年的取法有:,,,,,,,,,,,,,,共15种.其中2年均不畅销的取法是,共1种∴该款饮料这年中至少有1年畅销的概率为:(2)由题意得,2019年数据与2013,2015,2017,2018年数据重组如下表:年份20132015201720182019年生产件数(千万件)3691111年销售利润(千万元)224882100108经计算得,∵,∴∴当时,,此时预估年销售利润为103.26千万元将代入中得,,此时预估年销售利润为99.6千万元∵,故认为2019年的生产和销售计划不需要调整.【点睛】本题考查了概率的计算,回归方程,意在考查学生的计算能力和解决问题的能力.18、(1).(2).【解析】分析:(1)曲线C的参数方程消去参数,得曲线C的普通方程,整理得到,由此,根据极坐标与平面直角坐标之间的关系,可以求得曲线C的极坐标方程;(2)将直线的参数方程与曲线C的普通方程联立,利用直线方程中参数的几何意义,结合韦达定理,求得结果.详解:(1)的普通方程为,整理得,所以曲线的极坐标方程为.(2)点的直角坐标为,设,两点对应的参数为,,将直线的参数方程代入曲线的普通方程中得,整理得.所以,且易知,,由参数的几何意义可知,,,所以.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的参数方程向普通方程的转化,曲线的平面直角坐标方程向极坐标方程的转化,直线的参数方程中参数的几何意义,在解题的过程中,要认真分析,细心求解.19、(1)详见解析(2)【解析】
(1)证明EF∥BC,从而BC∥平面DEF,结合AB⊥DF,AB⊥DE,推出AB⊥平面DEF,即可证明平面DAB⊥平面DEF.
(2)在△DEF中过E作DF的垂线,垂足H,说明∠EBH即所求线面角,通过求解三角形推出结果.【详解】解:(1)证明:因为,所以,分别是,的中点所以,从而平面又,,所以平面从而平面平面(2)在中过作的垂线,垂足由(1)知平面,即所求线面角由是中点,得设,则,因为,则,,,所以所求线面角的正弦值为【点睛】本题考查直线与平面所成角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及计算能力,是中档题.20、(1);(2)见解析.【解析】
(1)利用相互独立事件的概率公式,分两种情况计算概率即可;(2)根据相互独立事件的概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年核能发电项目合作合同
- 2024年度企业正式员工劳动协议版A版
- 2024年国内企业股东股权转让与品牌价值提升合同3篇
- 2024年影视拍摄场地租赁合同8篇
- 2024年一氧化二氮项目建议书
- 2024年别墅建筑环境保护合同3篇
- 2024年体育赛事场地出租合同6篇
- 二零二四年度项目委托研发合同3篇
- 2024年LNG加注设备合作协议书
- 2024年企业间并购保密条款协议版B版
- 专业学位研究生专业实践能力考核表
- 小学道德与法治-五年级上美丽文字民族瑰宝第一课时教学课件设计
- 改革开放史智慧树知到课后章节答案2023年下中国药科大学
- 【肿瘤标志物不同检验方式的临床研究进展综述报告5000字(论文)】
- 基于多元智能理论的学生评价与发展研究
- 游戏综合YY频道设计模板
- 冲压失控行动计划-OCAP程序
- 四年级科学上册粤教版第1单元 生命的延续 单元练习二(含解析)
- 2023年阻碍中国芯片产业发展的主要因素分析
- Unit+5+Reading+Polyglots-+what+are+they+and+who+can+be+one-教学设计 高中英语人教版(2019)必修第一册
- 城市亮化高空作业及安全措施施工方案
评论
0/150
提交评论