版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
建筑结构地震反应分析与抗震验算第1页,课件共129页,创作于2023年2月3.1概述1.基本概念(1)地震作用:(2)结构的地震作用效应:地震作用在结构中所产生的内力变形(3)结构的地震反应:地震引起的结构振动2.地震作用的计算方法地震作用和结构抗震验算是建筑抗震设计的重要环节,是确定所设计的结构满足最低抗震设防安全要求的关键步骤。由于地震作用的复杂性和地震作用发生的强度的不确定性,以及结构和体形的差异等,地震作用的计算方法是不同的。可分为简化方法和较复杂的精细方法。(1)底部剪力法:不超过40m的规则结构(2)振型分解反应谱法:一般的规则结构,质量和刚度分布明显不对称结构(3)时程分析法:特别不规则、甲类和超过规定范围的高层建筑2第2页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析1.计算简图单自由度弹性体系:将结构参与振动的全部质量集中于一点,用无重量的弹性直杆支承于地面形成单质点体系,当该体系只作单向振动时,就形成了一个单自由度体系。如等高单层厂房、水塔等单质点弹性体系计算简图(a)单层厂房及简化体系;(b)水塔及简化体系3第3页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析2.运动方程根据达朗贝尔原理,物体在运动中的任一瞬时,作用在物体上的外力与惯性力相互平衡,故上式还可简化为质点位移质点加速度惯性力弹性恢复力阻尼力运动方程4第4页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析式中
ω——体系的圆频率;ζ——体系的阻尼比上式是一个常系数的二阶非齐次微分方程。它的解包含两部分:一是对应于齐次微分方程的通解,另一个是特解。前者表示自由振动,后者表示强迫振动。3.自由振动(1)自由振动方程
单自由度体系自由振动曲线时5第5页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析
——有阻尼单自由度弹性体系的圆频率阻尼越大,自振频率越慢。
比较上图中的各条曲线可知,无阻尼体系(ζ=0)自由振动时的振幅始终不变,而有阻尼体系自由振动的曲线则是一条逐渐衰减的波动曲线,即振幅随时间的增加而减小,并且体系的阻尼越大,其振幅的衰减就越快。(2)自振周期与自振频率自振周期:体系的频率:体系的圆频率:在实际结构中,阻尼比ζ的数值一般较小,其值大约在0.01~0.1之间。因此有阻尼频率与无阻尼频率ω相差不大,在实际计算中可近似地取由上式可得单自由度体系自振周期的计算公式为6第6页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析
由上式可见,结构的自振周期与其质量和刚度的大小有关。质量越大,则其周期就越长,而刚度越大,则其周期就越短。自振周期是结构的一种固有属性,也是结构本身一个很重要的动力特性。4.强迫振动(1)瞬时冲量及其引起的自由振动如图,荷载P与作用时间△t的乘积,即P·△t称为冲量。当作用时间为瞬时dt时,则称Pdt为瞬时冲量。根据动量定律,冲量等于动量的增量,故有:若体系处于静止状态,则初速度为0,故体系在瞬时冲量作用下获得的速度为:瞬时冲量及其引起的自由振动7第7页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析
又因体系原处于静止状态,故体系的初位移为零。这样可认为在瞬时荷载作用后的瞬间,体系的位移仍为零。也就是说,原来静止的体系在瞬时冲量的影响下将以初速度作自由振动。根据自由振动的方程式的解,并令其中,则可得:其位移时程曲线如上图所示。(2)杜哈默积分
方程的特解就是质点由外荷载引起的强迫振动,它可以从上述瞬时冲量的概念出发来进行推导。可将看作随时间变化的m=1的“干扰力”,并认为是由无穷多个连续作用的微分脉冲所组成,
8第8页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析今以任一微分脉冲作用进行讨论,设它在t=τ-dτ时开始作用,作用时间为dτ,则冲量大小为动量增量为从动量定理,得由通解式可求得当τ-dτ时,作用一个微分脉冲的位移反应为地震作用下的质点位移分析将所有微分脉冲作用后产生的自由振动叠加,得总位移反应上式为杜哈默积分,它与通解之和就是微分方程的全解。即9第9页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析由Duhamel积分可得零初始条件下质点相对于地面的位移为最大位移反应质点相对于地面的速度为质点相对于地面的最大速度反应为10第10页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析质点的绝对加速度为质点相对于地面的最大加速度反应为11第11页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析五、地震反应谱:主要反映地面运动的特性最大相对位移最大相对速度最大加速度最大反应之间的关系在阻尼比、地面运动确定后,最大反应只是结构周期的函数。
单自由度体系在给定的地震作用下某个最大反应与体系自振周期的关系曲线称为该反应的地震反应谱。12第12页,课件共129页,创作于2023年2月3.2单自由度弹性体系的地震反应分析位移反应谱Elcentro1940(N-S)地震记录13第13页,课件共129页,创作于2023年2月相对速度反应谱Elcentro1940(N-S)地震记录3.2单自由度弹性体系的地震反应分析14第14页,课件共129页,创作于2023年2月绝对加速度反应谱Elcentro1940(N-S)地震记录3.2单自由度弹性体系的地震反应分析15第15页,课件共129页,创作于2023年2月相对位移反应谱绝对加速度反应谱相对速度反应谱地震反应谱的特点1.阻尼比对反应谱影响很大2.对于加速度反应谱,当结构周期小于某个值时幅值随周期急剧增大,大于某个值时,快速下降。3.对于速度反应谱,当结构周期小于某个值时幅值随周期增大,随后趋于常数。4.对于位移反应谱,幅值随周期增大。3.2单自由度弹性体系的地震反应分析16第16页,课件共129页,创作于2023年2月不同场地条件对反应谱的影响将多个地震反应谱平均后得平均加速度反应谱
地震反应谱是现阶段计算地震作用的基础,通过反应谱把随时程变化的地震作用转化为最大的等效侧向力。周期(s)岩石坚硬场地厚的无粘性土层软土层结构的阻尼比和场地条件对反应谱有很大影响。3.2单自由度弹性体系的地震反应分析17第17页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱3.3.1水平地震作用的基本公式根据运动方程,可求得作用于单自由度弹性体系质点上的惯性力为:上式中阻尼力相对于弹性恢复力来说是一个可以略去的微量,故:这样,在地震作用下,质点在任一时刻的相对位移将与该时刻的瞬时惯性力成正比。因此,可认为这一相对位移是在惯性力的作用下引起的,虽然惯性力并不是真实作用于质点上的力,但惯性力对结构体系的作用和地震对结构体系的作用效果相当,所以对于单自由度体系,把惯性力看作反映地震对结构体系影响的等效力,用它的最大值对结构进行抗震验算,就可以使抗震设计这一动力计算问题转化为相当于静力荷载作用下的静力计算问题。。18第18页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱结构在地震持续过程中经受的最大地震作用为---集中于质点处的重力荷载代表值;---重力加速度---地震系数---动力系数---水平地震影响系数19第19页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱3.3.2标准反应谱水平地震作用:1.地震系数k:表征地面运动强烈程度它表示地面运动的最大加速度与重力加速度之比。一般地,地面运动加速度愈大,则地震烈度愈高,故地震系数与地震烈度之间存在着一定的对应关系。根据统计分析,烈度每增加一度,地震系数将增加一倍。2.动力系数β:20第20页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱
它表示单质点最大绝对加速度与地面最大加速度的比值,表示由于动力效应,质点的最大绝对加速度比地面最大加速度放大了多少倍。从上式可知,动力系数与地面运动加速度,结构自振周期以及阻尼比有关。
β与T的关系曲线称为β谱曲线,它实际上就是相对于地面加速度的加速度反应谱,两者在形状上完全一样。3.地震影响系数α:当基本烈度确定,地震系数为常数,α仅随β变化建筑结构的地震影响系数α应根据烈度、场地类别、设计地震分组和结构自振周期以及阻尼比确定。21第21页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱4.标准反应谱由于地震的随机性,即使在同一地点、同一烈度,每次地震的地面加速度记录也很不一致,因此需要根据大量的强震记录计算出对应于每一条强震记录的反应谱曲线,然后统计求出最有代表性的平均曲线作为设计依据,这种曲线称为标准反应谱曲线。各种因素对反应谱的影响(a)场地条件对β谱曲线的影响;(b)同等烈度下震中距对加速度谱曲线的影响
22第22页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱
根据不同地面运动记录的统计分析可以看出,场地土的特性、震级以及震中距等都对反应谱曲线有比较明显的影响。结构的自振周期与场地的自振周期接近时,结构的地震反应最大。因此,在进行结构的抗震设计时,应使结构的自振周期远离场地的卓越周期,以避免发生类共振现象。一般地,当烈度基本相同时,震中距远时加速度反应谱的峰点偏于较长的周期,近时则偏于较短的周期。因此,在离大地震震中较远的地方,高柔结构因其周期较长所受到的地震破坏,将比同等烈度下较小或中等地震的震中区所受到的破坏严重,而刚性结构的地震破坏情况则相反。3.3.3设计反应谱为了便于计算,《抗震规范》采用相对于重力加速度的单质点绝对最大加速度,即α与体系自振周期T之间的关系作为设计用反应谱。23第23页,课件共129页,创作于2023年2月3.3单自由度弹性体系的水平地震作用及其反应谱
---地震影响系数;---地震影响系数最大值;
地震影响系数最大值(阻尼比为0.05)1.400.90(1.20)0.50(0.72)-----罕遇地震0.320.16(0.24)0.08(0.12)0.04多遇地震9876地震影响烈度
括号数字分别对应于设计基本加速度0.15g和0.30g地区的地震影响系数---结构周期;24第24页,课件共129页,创作于2023年2月---特征周期;地震特征周期分组的特征周期值(s)0.900.650.450.35第三组0.750.550.400.30第二组0.650.450.350.25第一组ⅣⅢⅡⅠ场地类别---曲线下降段的衰减指数;---直线下降段的斜率调整系数;---阻尼调整系数,小于0.55时,应取0.55。3.3单自由度弹性体系的水平地震作用及其反应谱25第25页,课件共129页,创作于2023年2月解:(1)求结构体系的自振周期(2)求水平地震影响系数查表确定地震影响系数最大值(阻尼比为0.05)1.400.90(1.20)0.50(0.72)-----罕遇地震0.320.16(0.24)0.08(0.12)0.04多遇地震9876地震影响烈度例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚度,阻尼比为0.05。试求该结构多遇地震时的水平地震作用。h=5m3.3单自由度弹性体系的水平地震作用及其反应谱26第26页,课件共129页,创作于2023年2月查表确定地震特征周期分组的特征周期值(s)0.900.650.450.35第三组0.750.550.400.30第二组0.650.450.350.25第一组ⅣⅢⅡⅠ场地类别例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚度,阻尼比为0.05。试求该结构多遇地震时的水平地震作用。
h=5m解:(1)求结构体系的自振周期(2)求水平地震影响系数3.3单自由度弹性体系的水平地震作用及其反应谱27第27页,课件共129页,创作于2023年2月解:例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚度,阻尼比为0.05。试求该结构多遇地震时的水平地震作用。
(1)求结构体系的自振周期(2)求水平地震影响系数h=5m(3)计算结构水平地震作用3.3单自由度弹性体系的水平地震作用及其反应谱28第28页,课件共129页,创作于2023年2月3.4多自由度弹性体系地震反应分析的振型分解法3.4.1计算简图多自由度弹性体系:对于多层或高层工业与民用建筑等,则应简化为多质点体系来计算,这样才能比较真实地反映其动力性能。按质量集中法将i和i+1层之间的结构重力荷载和楼面活荷载集中于楼面标高处,由无重量的弹性直杆支撑于地面上,这样就将多层或高层结构简化为了多质点弹性体系。对于一个多质点体系,当体系只有单向振动时,则有多少个质点就有多少个自由度。ii+1m1m2mimn29第29页,课件共129页,创作于2023年2月3.4.2多自由度弹性体系动力分析回顾1.自由振动分析运动方程设方程的特解为m1m2---频率方程---振型方程3.4多自由度弹性体系地震反应分析的振型分解法30第30页,课件共129页,创作于2023年2月解:例.求图示体系的频率、振型.已知:m1m211.61810.6183.4多自由度弹性体系地震反应分析的振型分解法31第31页,课件共129页,创作于2023年2月按振型振动时的运动规律m1m2按i振型振动时,质点的位移为质点的加速度为质点上的惯性力为质点上的惯性力与位移同频同步。
振型可看成是将按振型振动时的惯性力幅值作为静荷载所引起的静位移。3.4多自由度弹性体系地震反应分析的振型分解法32第32页,课件共129页,创作于2023年2月2.振型的正交性i振型i振型上的惯性力j振型i振型上的惯性力在j振型上作的虚功i振型j振型3.4多自由度弹性体系地震反应分析的振型分解法33第33页,课件共129页,创作于2023年2月j振型上的惯性力2.振型的正交性i振型上的惯性力在j振型上作的虚功i振型j振型j振型上的惯性力在i振型上作的虚功由虚功互等定理3.4多自由度弹性体系地震反应分析的振型分解法34第34页,课件共129页,创作于2023年2月i振型j振型振型对质量正交性的物理意义i振型上的惯性力在j振型上作的虚功等于0振型对刚度的正交性:由虚功互等定理3.4多自由度弹性体系地震反应分析的振型分解法35第35页,课件共129页,创作于2023年2月振型对质量正交性的物理意义i振型上的惯性力在j振型上作的虚功等于0振型对刚度的正交性:振型对刚度正交性的物理意义
i振型上的弹性力在j振型上作的虚功等于0i振型j振型3.4多自由度弹性体系地震反应分析的振型分解法36第36页,课件共129页,创作于2023年2月振型正交性的应用1.检验求解出的振型的正确性。例:试验证振型的正确性2.对耦联运动微分方程组作解耦运算等等.3.4多自由度弹性体系地震反应分析的振型分解法37第37页,课件共129页,创作于2023年2月(1)能量法计算基本周期3.自振频率和振型的实用计算方法设体系按i振型作自由振动。速度为应用抗震设计反应谱计算地震作用下的结构反应,除砌体结构、底部框架抗震墙砖房和内框架房屋采用底部剪力法不需要计算自振周期外,其余均需计算自振周期。计算方法:矩阵位移法解特征问题、近似公式、经验公式。t时刻的位移为3.4多自由度弹性体系地震反应分析的振型分解法38第38页,课件共129页,创作于2023年2月(1)能量法计算基本周期设体系按i振型作自由振动。速度为t时刻的位移为动能为势能为3.4多自由度弹性体系地震反应分析的振型分解法39第39页,课件共129页,创作于2023年2月(1)能量法计算基本周期设体系按i振型作自由振动。速度为t时刻的位移为动能为势能为最大动能为最大势能为由能量守恒,有通常将重力作为荷载所引起的位移代入上式求基本频率的近似值。3.4多自由度弹性体系地震反应分析的振型分解法40第40页,课件共129页,创作于2023年2月3.4多自由度弹性体系地震反应分析的振型分解法41第41页,课件共129页,创作于2023年2月解:例.已知:求结构的基本周期。G2G1(1)计算各层层间剪力(2)计算各楼层处的水平位移(3)计算基本周期3.4多自由度弹性体系地震反应分析的振型分解法42第42页,课件共129页,创作于2023年2月(2)等效质量法(折算质量法)将多质点体系用单质点体系代替。多质点体系的最大动能为单质点体系的最大动能为---体系按第一振型振动时,相应于折算质点处的最大位移;---单位水平力作用下顶点位移。3.4多自由度弹性体系地震反应分析的振型分解法43第43页,课件共129页,创作于2023年2月解:例.已知:求结构的基本周期。G2G1能量法的结果为T1=0.508s3.4多自由度弹性体系地震反应分析的振型分解法44第44页,课件共129页,创作于2023年2月(3)顶点位移法对于顶点位移容易估算的建筑结构,可直接由顶点位移估计基本周期。①体系按弯曲振动时抗震墙结构可视为弯曲型杆。无限自由度体系,弯曲振动的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3.4多自由度弹性体系地震反应分析的振型分解法45第45页,课件共129页,创作于2023年2月②体系按剪切振动时框架结构可近似视为剪切型杆。无限自由度体系,剪切杆的的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3.4多自由度弹性体系地震反应分析的振型分解法46第46页,课件共129页,创作于2023年2月③体系按剪弯振动时框架-抗震墙结构可近似视为剪弯型杆。基本周期为3.4多自由度弹性体系地震反应分析的振型分解法47第47页,课件共129页,创作于2023年2月(4)自振周期的经验公式根据实测统计,忽略填充墙布置、质量分布差异等,初步设计时可按下列公式估算(1)高度低于25m且有较多的填充墙框架办公楼、旅馆的基本周期(2)高度低于50m的钢筋混凝土框架-抗震墙结构的基本周期H---房屋总高度;B---所考虑方向房屋总宽度。(3)高度低于50m的规则钢筋混凝土抗震墙结构的基本周期(4)高度低于35m的化工煤炭工业系统钢筋混凝土框架厂房的基本周期3.4多自由度弹性体系地震反应分析的振型分解法48第48页,课件共129页,创作于2023年2月在实测统计基础上,再忽略房屋宽度和层高的影响等,有下列更粗略的公式(1)钢筋混凝土框架结构(2)钢筋混凝土框架-抗震墙或钢筋混凝土框架-筒体结构N---结构总层数。(3)钢筋混凝土抗震墙或筒中筒结构(4)钢-钢筋混凝土混合结构(5)高层钢结构3.4多自由度弹性体系地震反应分析的振型分解法49第49页,课件共129页,创作于2023年2月矩阵迭代法(Stodola法)(5)结构振型的计算有限自由度体系求频率、振型,属于矩阵特征值问题。柔度法建立的振型方程令---动力矩阵---标准特征值问题刚度法建立的振型方程---广义特征值问题迭代式为3.4多自由度弹性体系地震反应分析的振型分解法50第50页,课件共129页,创作于2023年2月例:用迭代法计算图示体系的各阶自振频率和振型.假设第一振型解:(1)求柔度矩阵(2)求第一振型第一次迭代近似值3.4多自由度弹性体系地震反应分析的振型分解法51第51页,课件共129页,创作于2023年2月第一次迭代近似值第二次迭代近似值第三次迭代近似值第四次迭代近似值3.4多自由度弹性体系地震反应分析的振型分解法52第52页,课件共129页,创作于2023年2月第四次迭代近似值3.4多自由度弹性体系地震反应分析的振型分解法53第53页,课件共129页,创作于2023年2月例:用迭代法计算图示体系的各阶自振频率和振型.解:(1)求柔度矩阵(2)求第一振型(3)求第二振型由振型正交性3.4多自由度弹性体系地震反应分析的振型分解法54第54页,课件共129页,创作于2023年2月(3)求第二振型由振型正交性假设第一次迭代近似值3.4多自由度弹性体系地震反应分析的振型分解法55第55页,课件共129页,创作于2023年2月假设第一次迭代近似值3.4多自由度弹性体系地震反应分析的振型分解法56第56页,课件共129页,创作于2023年2月(3)求第三振型由振型正交性假设3.4多自由度弹性体系地震反应分析的振型分解法57第57页,课件共129页,创作于2023年2月假设第一次迭代近似值最终结果:3.4多自由度弹性体系地震反应分析的振型分解法58第58页,课件共129页,创作于2023年2月第一次迭代近似值最终结果:雅可比法(Jacbi)3.4多自由度弹性体系地震反应分析的振型分解法59第59页,课件共129页,创作于2023年2月3.4.3振型分解法(不计阻尼)运动方程设代入运动方程,得方程两端左乘3.4多自由度弹性体系地震反应分析的振型分解法60第60页,课件共129页,创作于2023年2月折算体系---j振型广义质量---j振型广义荷载---j振型广义刚度3.4多自由度弹性体系地震反应分析的振型分解法61第61页,课件共129页,创作于2023年2月计算步骤:2.求广义质量、广义荷载;3.求组合系数;4.按下式求位移:1.求振型、频率:折算体系3.4多自由度弹性体系地震反应分析的振型分解法62第62页,课件共129页,创作于2023年2月3.4.3振型分解法(计阻尼)阻尼力--阻尼矩阵--当质点j有单位速度,其余质点速度为0时,质点i上的阻尼力.若下式成立则将称作正交阻尼矩阵,称作振型j的广义阻尼系数.3.4多自由度弹性体系地震反应分析的振型分解法63第63页,课件共129页,创作于2023年2月运动方程设令--第j振型阻尼比(由试验确定).计算步骤:1.求振型、频率;2.求广义质量、广义荷载;4.求组合系数;5.求位移;3.确定振型阻尼比;3.4多自由度弹性体系地震反应分析的振型分解法64第64页,课件共129页,创作于2023年2月3.4.4正交阻尼矩阵的构成其中,a0
、a1由试验确定。通过实测获得两个振型阻尼比和。同理---瑞利阻尼矩阵3.4多自由度弹性体系地震反应分析的振型分解法65第65页,课件共129页,创作于2023年2月3.4.5计算水平地震作用的振型分解反应谱法作用于i质点上的力有m1m2mimNxixg(t)惯性力弹性恢复力阻尼力运动方程3.4多自由度弹性体系地震反应分析的振型分解法66第66页,课件共129页,创作于2023年2月设代入运动方程,得方程两端左乘3.4多自由度弹性体系地震反应分析的振型分解法67第67页,课件共129页,创作于2023年2月---j振型广义质量---j振型广义阻尼系数---j振型广义刚度3.4多自由度弹性体系地震反应分析的振型分解法68第68页,课件共129页,创作于2023年2月---j振型的振型参与系数3.4多自由度弹性体系地震反应分析的振型分解法69第69页,课件共129页,创作于2023年2月对于单自由度体系对于j振型折算体系(右图)3.4多自由度弹性体系地震反应分析的振型分解法70第70页,课件共129页,创作于2023年2月i质点相对于基础的位移与加速度为i质点t时刻的水平地震作用为---t时刻第j振型i质点的水平地震作用3.4多自由度弹性体系地震反应分析的振型分解法71第71页,课件共129页,创作于2023年2月---体系j振型i质点水平地震作用标准值---体系j振型i质点水平地震作用标准值计算公式---t时刻第j振型i质点的水平地震作用对于单自由度体系3.4多自由度弹性体系地震反应分析的振型分解法72第72页,课件共129页,创作于2023年2月---相应于j振型自振周期的地震影响系数;---j振型i质点的水平相对位移;---j振型的振型参与系数;---i质点的重力荷载代表值。m1m2mi1振型地震作用标准值2振型j振型n振型地震作用效应(弯矩、位移等)--j振型地震作用产生的地震效应;m--选取振型数---体系j振型i质点水平地震作用标准值计算公式一般只取2-3个振型,当基本自振周期大于1.5s或房屋高宽比大于5时,振型个数可适当增加。3.4多自由度弹性体系地震反应分析的振型分解法73第73页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数1.400.90(1.20)0.50(0.72)-----罕遇地震0.320.16(0.24)0.08(0.12)0.04多遇地震9876地震影响烈度地震影响系数最大值(阻尼比为0.05)查表得地震特征周期分组的特征周期值(s)0.900.650.450.35第三组0.750.550.400.30第二组0.650.450.350.25第一组ⅣⅢⅡⅠ场地类别3.4多自由度弹性体系地震反应分析的振型分解法74第74页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数查表得第一振型第二振型第三振型3.4多自由度弹性体系地震反应分析的振型分解法75第75页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数第一振型第二振型第三振型3.4多自由度弹性体系地震反应分析的振型分解法76第76页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层的水平地震作用第一振型第一振型3.4多自由度弹性体系地震反应分析的振型分解法77第77页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层的水平地震作用第一振型第二振型第二振型3.4多自由度弹性体系地震反应分析的振型分解法78第78页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层的水平地震作用第一振型第二振型第三振型第三振型3.4多自由度弹性体系地震反应分析的振型分解法79第79页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层的水平地震作用第一振型第二振型第三振型(5)计算各振型的地震作用效应(层间剪力)第一振型1振型3.4多自由度弹性体系地震反应分析的振型分解法80第80页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层的水平地震作用第一振型第二振型第三振型(5)计算各振型的地震作用效应(层间剪力)1振型第二振型2振型3.4多自由度弹性体系地震反应分析的振型分解法81第81页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层的水平地震作用第一振型第二振型第三振型(5)计算各振型的地震作用效应(层间剪力)1振型2振型第三振型3振型3.4多自由度弹性体系地震反应分析的振型分解法82第82页,课件共129页,创作于2023年2月例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)求体系的自振周期和振型(2)计算各振型的地震影响系数(3)计算各振型的振型参与系数(4)计算各振型各楼层地震作用第一振型第二振型第三振型(5)计算各振型的地震作用效应1振型2振型3振型(6)计算地震作用效应(层间剪力)组合后各层地震剪力3.4多自由度弹性体系地震反应分析的振型分解法83第83页,课件共129页,创作于2023年2月3.5.1底部剪力的计算第j振型j振型的底部剪力为G—结构的总重力荷载代表值组合后的结构底部剪力—高振型影响系数(规范取0.85)Geq—结构等效总重力荷载代表值,0.85G3.5计算水平地震作用的底部剪力法84第84页,课件共129页,创作于2023年2月3.5.2各质点的水平地震作用标准值的计算H1G1GkHk地震作用下各楼层水平地震层间剪力为3.5计算水平地震作用的底部剪力法85第85页,课件共129页,创作于2023年2月3.5.3顶部附加地震作用的计算当结构层数较多时,按上式计算出的水平地震作用比振型分解反应谱法小。为了修正,在顶部附加一个集中力。H1G1GkHk---结构总水平地震作用标准值;---相应于结构基本周期的水平地震影响系数;多层砌体房屋、底部框架和多层内框架砖房,宜取水平地震影响系数最大值;---结构等效总重力荷载;---i质点水平地震作用;---i质点重力荷载代表值;---i质点的计算高度;---顶部附加地震作用系数,多层内框架砖房0.2,多层钢混、钢结构房屋按下表,其它可不考虑。顶部附加地震作用系数3.5计算水平地震作用的底部剪力法86第86页,课件共129页,创作于2023年2月四、底部剪力法适用范围底部剪力法适用于一般的多层砖房等砌体结构、内框架和底部框架抗震墙砖房、单层空旷房屋、单层工业厂房及多层框架结构等低于40m以剪切变形为主的规则房屋。以“剪切变形”为主:在结构侧移曲线中,楼盖出平面转动产生的侧移所占的比例较小。“规则房屋”:1.相邻层质量的变化不宜过大。2.避免采用层高特别高或特别矮的楼层,相邻层和连续三层的刚度变化平缓。3.5计算水平地震作用的底部剪力法87第87页,课件共129页,创作于2023年2月3.出屋面小建筑的尺寸不宜过大(宽度b大于高度h且出屋面高度与总高度之比满足h/H<1/5),局部缩进的尺寸也不宜大(缩进后的宽度B1与总宽度B之比满足);bhHB4.楼层内抗侧力构件的布置和质量的分布要基本对称;5.抗侧力构件在平面内呈正交(夹角大于75度)分布,以便在两个主轴方向分别进行抗震分析;3.5计算水平地震作用的底部剪力法88第88页,课件共129页,创作于2023年2月6.平面局部突出的尺寸不大(局部伸出部分在长度方向的尺寸l大于宽度方向的尺寸b,且宽度b与总宽度B之比满足b/B<1/5-1/4);对于不满足规则要求的建筑结构,则不宜将底部剪力法作为设计依据。否则,要采取相应的调整,使计算结果合理化。bBlbBlbBllbBl3.5计算水平地震作用的底部剪力法89第89页,课件共129页,创作于2023年2月3.5.5底部剪力法应用举例例1:试用底部剪力法计算图示框架多遇地震时的层间剪力。已知结构的基本周期T1=0.467s,抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)计算结构等效总重力荷载代表值10.5m7.0m3.5m(2)计算水平地震影响系数查表得1.400.90(1.20)0.50(0.72)-----罕遇地震0.320.16(0.24)0.08(0.12)0.04多遇地震9876地震影响烈度地震影响系数最大值(阻尼比为0.05)3.5计算水平地震作用的底部剪力法90第90页,课件共129页,创作于2023年2月解:(1)计算结构等效总重力荷载代表值例1:试用底部剪力法计算图示框架多遇地震时的层间剪力。已知结构的基本周期T1=0.467s,抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。10.5m7.0m3.5m(2)计算水平地震影响系数地震特征周期分组的特征周期值(s)0.900.650.450.35第三组0.750.550.400.30第二组0.650.450.350.25第一组ⅣⅢⅡⅠ场地类别(3)计算结构总的水平地震作用标准值3.5计算水平地震作用的底部剪力法91第91页,课件共129页,创作于2023年2月例1:试用底部剪力法计算图示框架多遇地震时的层间剪力。已知结构的基本周期T1=0.467s,抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)计算结构等效总重力荷载代表值10.5m7.0m3.5m(2)计算水平地震影响系数(3)计算结构总的水平地震作用标准值(4)顶部附加水平地震作用顶部附加地震作用系数(5)计算各层的水平地震作用标准值3.5计算水平地震作用的底部剪力法92第92页,课件共129页,创作于2023年2月例1:试用底部剪力法计算图示框架多遇地震时的层间剪力。已知结构的基本周期T1=0.467s,抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)计算结构等效总重力荷载代表值10.5m7.0m3.5m(2)计算水平地震影响系数(3)计算结构总的水平地震作用标准值(4)顶部附加水平地震作用(5)计算各层的水平地震作用标准值3.5计算水平地震作用的底部剪力法93第93页,课件共129页,创作于2023年2月例1:试用底部剪力法计算图示框架多遇地震时的层间剪力。已知结构的基本周期T1=0.467s,抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。解:(1)计算结构等效总重力荷载代表值10.5m7.0m3.5m(2)计算水平地震影响系数(3)计算结构总的水平地震作用标准值(4)顶部附加水平地震作用(5)计算各层的水平地震作用标准值(6)计算各层的层间剪力振型分解反应谱法结果3.5计算水平地震作用的底部剪力法94第94页,课件共129页,创作于2023年2月例2:六层砖混住宅楼,建造于基本烈度为8度区,场地为Ⅱ类,设计地震分组为第一组,根据各层楼板、墙的尺寸等得到恒荷和各楼面活荷乘以组合值系数,得到的各层的重力荷载代表值为G1=5399.7kN,G2=G3=G4=G5=5085kN,G6=3856.9kN。试用底部剪力法计算各层地震剪力标准值。G12.952.702.702.702.702.70G2G3G4G5G6由于多层砌体房屋中纵向或横向承重墙体的数量较多,房屋的侧移刚度很大,因而其纵向和横向基本周期较短,一般均不超过0.25s。所以规范规定,对于多层砌体房屋,确定水平地震作用时采用。并且不考虑顶部附加水平地震作用。3.5计算水平地震作用的底部剪力法95第95页,课件共129页,创作于2023年2月例2:基本烈度为8度,场地为Ⅱ类,设计地震分组为第一组,G1=5399.7kN,G2=G3=G4=G5=5085kN,G6=3856.9kN。计算各层地震剪力标准值。解:结构总水平地震作用标准值G12.952.702.702.702.702.70G2G3G4G5G61.400.90(1.20)0.50(0.72)-----罕遇地震0.320.16(0.24)0.08(0.12)0.04多遇地震9876地震影响烈度地震影响系数最大值(阻尼比为0.05)3.5计算水平地震作用的底部剪力法96第96页,课件共129页,创作于2023年2月G12.952.702.702.702.702.70G2G3G4G5G6例2:基本烈度为8度,场地为Ⅱ类,设计地震分组为第一组,G1=5399.7kN,G2=G3=G4=G5=5085kN,G6=3856.9kN。计算各层地震剪力标准值。解:结构总水平地震作用标准值各层水平地震剪力标准值各层水平地震作用层Gi(kN)Hi(m)GiHi(kN.m)Fi(kN)Vi(kN)63856.917.4555085.014.7545085.012.0535085.09.3525085.06.6515399.72.95Σ
67320.921328.8233815.2547544.7561274.2575003.75306269.72884.5985.7805.3624.8444.4280.44025.1884.51870.22675.53300.33744.74025.129596.63.5计算水平地震作用的底部剪力法97第97页,课件共129页,创作于2023年2月例3:四层钢筋混凝土框架结构,建造于基本烈度为8度区,场地为Ⅱ类,设计地震分组为第一组,层高和层重力代表值如图所示。结构的基本周期为0.56s,试用底部剪力法计算各层地震剪力标准值。解:结构总水平地震作用标准值4.363.363.36G4=831.6G3=1039.6G2=1039.6G1=1122.73.361.400.90(1.20)0.50(0.72)-----罕遇地震0.320.16(0.24)0.08(0.12)0.04多遇地震9876地震影响烈度地震影响系数最大值(阻尼比为0.05)地震特征周期分组的特征周期值(s)0.900.650.450.35第三组0.750.550.400.30第二组0.650.450.350.25第一组ⅣⅢⅡⅠ场地类别3.5计算水平地震作用的底部剪力法98第98页,课件共129页,创作于2023年2月例3:四层钢筋混凝土框架结构,建造于基本烈度为8度区,场地为Ⅱ类,设计地震分组为第一组,层高和层重力代表值如图所示。结构的基本周期为0.56s,试用底部剪力法计算各层地震剪力标准值。解:结构总水平地震作用标准值4.363.363.36G4=831.6G3=1039.6G2=1039.6G1=1122.73.363.5计算水平地震作用的底部剪力法99第99页,课件共129页,创作于2023年2月例3:四层钢筋混凝土框架结构,建造于基本烈度为8度区,场地为Ⅱ类,设计地震分组为第一组,层高和层重力代表值如图所示。结构的基本周期为0.56s,试用底部剪力法计算各层地震剪力标准值。解:结构总水平地震作用标准值4.363.363.36G4=831.6G3=1039.6G2=1039.6G1=1122.73.36顶部附加水平地震作用顶部附加地震作用系数3.5计算水平地震作用的底部剪力法100第100页,课件共129页,创作于2023年2月例3:四层钢筋混凝土框架结构,建造于基本烈度为8度区,场地为Ⅱ类,设计地震分组为第一组,层高和层重力代表值如图所示。结构的基本周期为0.56s,试用底部剪力法计算各层地震剪力标准值。解:结构总水平地震作用标准值4.363.363.36G4=831.6G3=1039.6G2=1039.6G1=1122.73.36顶部附加水平地震作用各层水平地震作用131.6238.9313.7359.319.7111.9107.374.845.6339.612008.311517.78024.94895.036445.914.4411.087.724.36831.61039.51039.51122.74033.34321ΣVi(kN)(kN)Fi(kN)GiHi(kN.m)Hi(m)Gi(kN)层各层水平地震剪力标准值3.5计算水平地震作用的底部剪力法101第101页,课件共129页,创作于2023年2月3.5.6突出屋面附属结构地震内力的调整震害表明,突出屋面的屋顶间(电梯机房、水箱间)、女儿墙、烟囱等,它们的震害比下面的主体结构严重。原因是由于突出屋面的这些结构的质量和刚度突然减小,地震反应随之增大。---鞭端效应。《抗震规范》规定:采用底部剪力法时,突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3。此增大部分不应向下传递,但与该突出部分相连的构件应计入。3.5计算水平地震作用的底部剪力法102第102页,课件共129页,创作于2023年2月长周期结构地震内力的调整对于长周期结构,地震地面运动速度和位移可能对结构的破坏具有更大的影响。为了安全,按振型分解反应谱法和底部剪力法算得的结构层间剪力应符合下式要求VEKi---第i层对应与水平地震作用标准值的楼层剪力;Gj---第j层的重力荷载代表值。λ-----剪力系数,不应小于下表数值,对竖向不规则结构的薄弱层,尚应乘以1.15的增大系数;类别7度8度9度扭转效应明显或基本周期小于3.5s的结构0.0160.0320.064基本周期大于5.0s的结构0.0120.0240.040基本周期介于3.5s和5s之间的结构,可插入取值。3.5计算水平地震作用的底部剪力法103第103页,课件共129页,创作于2023年2月3.6结构的地震扭转效应1.产生扭转振动的原因两方面:建筑自身的原因和地震地面运动的原因。结构的质心就是结构的重心。结构的刚度中心(刚心)就是结构抗侧力构件恢复力合力的作用点(1)建筑结构的偏心产生偏心的原因:a.建筑物的柱体与墙体等抗侧力构件布置不对称。b.建筑物的平面不对称。质心刚心104第104页,课件共129页,创作于2023年2月3.6结构的地震扭转效应c.建筑物的立面不对称。d.建筑物的平面、立面均不对称。e.建筑物各层质心与刚心重合,但上下层不在同一垂直线上。f.偶然偏心。(2)地震地面运动存在着转动分量,或地震时地面各点的运动存在着相位差。地震波在地面上各点的波速、周期和相位不同。建筑结构基底将产生绕竖直轴的转动,结构便会产生扭转振动。无论结构是否有偏心,地震地面运动产生的结构扭转振动均是存在的。但二者有区别,无偏心结构的平动与扭转振动不是耦合的,而有偏心结构的平动与扭转振动是耦合的。105第105页,课件共129页,创作于2023年2月3.6结构的地震扭转效应
《抗震规范》规定,对于质量和刚度明显不均匀、不对称的结构,应考虑双向水平地震作用下的扭转影响,其他情况下宜采用调整地震作用效应的方法来考虑结构扭转作用的影响。2.考虑扭转地震效应的方法(1)规则结构不进行扭转耦联计算时,平行于地震作用方向的两个边榀,其地震作用效应宜乘以增大系数。一般情况下,短边可按1.15、长边可按1.05采用;当扭转刚度较小时,宜按不小于1.3采用。(2)采用扭转耦联的振型分解反应谱法。106第106页,课件共129页,创作于2023年2月3.7地基与结构的相互作用3.7.1地基与结构的相互作用对结构地震反应的影响1.地基与结构的相互作用当上部结构的地震作用通过基础而反馈给地基时,地基将产生一定的局部变形,从而引起结构的移动或摆动。这种现象称为地基与结构的相互作用。2.地基与结构相互作用的结果,使地基运动和结构动力特性都发生改变,主要表现在以下几个方面:(1)改变了地基运动的频谱组成;(2)由于地基的柔性,使得结构的基本周期延长;地基与结构相互作用程度(3)由于地基的柔性,使结构的振动衰减。刚性柔性坚硬中等程度微小柔软显著中等程度107第107页,课件共129页,创作于2023年2月规范5.2.7规定:结构抗震计算,一般情况下可不计入地基与结构相互作用的影响;8度和9度时建造于Ⅲ、Ⅳ类场地,采用箱基、刚性较好的筏基和桩箱联合基础的钢筋混凝土高层建筑,当结构基本自振周期处于特征周期的1.2倍至5倍范围时,若计入地基与结构动力相互作用的影响,对刚性地基假定计算的水平地震剪力可按下列规定折减,其层间变形可按折减后的楼层剪力计算。3.7地基与结构的相互作用3.7.2考虑地基结构相互作用的抗震设计108第108页,课件共129页,创作于2023年2月1.高宽比小于3的结构,各楼层水平地震剪力的折减系数,可按下式计算:---计入地基与结构动力相互作用后的地震剪力折减系数;---按刚性地基假定确定的结构基本自振周期;---计入地基与结构动力相互作用的附加周期按右表采用(单位:s);0.250.1090.200.088ⅣⅢ烈度场地类别2.高宽比不小于3的结构,底部的地震剪力按1款规定折减,顶部不折减,中间各层按线性插入值折减.3.折减后各楼层的水平地震剪力应符合规定。3.7地基与结构的相互作用109第109页,课件共129页,创作于2023年2月竖向地震运动是可观的:根据观测资料的统计分析,在震中距小于200km范围内,同一地震的竖向地面加速度峰值与水平地面加速度峰值之比av/ah平均值约为1/2,甚至有时可达1.6。竖向地震作用的影响是显著的:根据地震计算分析,对于高层建筑、高耸及大跨结构影响显著。结构竖向地震内力NE/与重力荷载产生的内力NG的比值沿高度自下向上逐渐增大,烈度为8度时为50%至90%,9度时可达或超过1;335m高的电视塔上部,8度时为138%;高层建筑上部,8度时为50%至110%。3.8竖向地震作用110第110页,课件共129页,创作于2023年2月目前,国外抗震设计规定中要求考虑竖向地震作用的结构或构件有:1.长悬臂结构;2.大跨度结构;3.高耸结构和较高的高层建筑;4.以轴向力为主的结构构件(柱或悬挂结构);5.砌体结构;6.突出于建筑顶部的小构件。我国抗震设计规范规定前三类结构要考虑向上或向下竖向地震作用的不利影响。3.8竖向地震作用111第111页,课件共129页,创作于2023年2月计算结构竖向地震作用的方法:静力法:取结构或构件重力的某个百分数作为其竖向地震作用;水平地震作用折减法:取结构或构件水平地震作用的某个百分数其竖向地震作用;竖向地震反应谱法:与水平地震反应谱法相同。规范采用的是基于竖向地震反应谱法的拟静力法。时程反应分析:3.8竖向地震作用112第112页,课件共129页,创作于2023年2月3.8.1竖向地震反应谱竖向地震反应谱与水平地震反应谱的比较:Ⅰ类场地竖向地震平均反应谱与水平地震平均反应谱形状相差不大加速度峰值约为水平的1/2至2/3。可利用水平地震反应谱进行分析。3.8竖向地震作用113第113页,课件共129页,创作于2023年2月分析结果表明:高耸结构和高层建筑竖向第一振型的地震内力与竖向前5个振型按平方和开方组合的地震内力相比较,误差仅在5%--15%。此外,竖向第一振型的数值大致呈倒三角形式,基本周期小于场地特征周期。因此,高耸结构和高层建筑竖向地震作用可按与底部剪力法类似的方法计算。3.8竖向地震作用114第114页,课件共129页,创作于2023年2月3.8.2高耸结构和高层建筑竖向地震作用的计算公式---结构总竖向地震作用标准值;---竖向、水平地震影响系数最大值。H1G1Hi---质点i的竖向地震作用标准值。规范要求:9度时,高层建筑楼层的竖向地震作用效应应乘以1.5的增大系数。3.8竖向地震作用115第115页,课件共129页,创作于2023年2月3.8.3平板型网架屋盖与大于24m屋架的竖向地震作用计算---第i杆件的竖向地震内力;---第i杆件的重力内力。反应谱法计算结果表明1.比值虽不相同,但相差不大,故可取最大值作为设计依据;2.比值与烈度和场地类别有关;3.比值与跨度有关,但在常用的范围内,变化不很大;为了简化,略去其影响;---竖向地震作用系数,按表采用;---重力荷载代表值。0.250.250.2090.13(0.19)0.13(0.19)0.10(0.15)80.200.150.1590.10(0.15)0.08(0.12)可不计算(0.10)8Ⅲ、ⅣⅡⅠ钢筋混凝土屋架平板型网架钢屋架结构类型烈度场地类别采用静力法3.8竖向地震作用116第116页,课件共129页,创作于2023年2月
对于长悬臂和其它大跨度结构的竖向地震作用标准值,8度和9度可分别取该结构、构件重力荷载代表值的10%和20%,设计基本地震加速度为0.30g时,可取该结构构件重力荷载代表值的15%。3.8竖向地震作用3.8.4其他结构117第117页,课件共129页,创作于2023年2月3.9结构地震反应的时程分析法1.定义所谓时程分析法,亦称直接动力法,是根据选定的地震波和结构恢复力特性曲线,采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应,以便观察结构在强震作用下从弹性到非弹性阶段的内力变化以及构件开裂、损坏直至结构倒塌的破坏全过程。2.适用范围采用时程分析的房屋高度范围
《抗震规范》规定,对特别不规则的建筑、甲类建筑和下表所列高度范围的高层建筑,应采用时程分析法进行多遇地震作用下的补充计算,并取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值,同时建议采用简化计算方法或弹塑性时程分析法计算罕遇地震作用下结构的变形。烈度、场地类别房屋高度范围(m)8度Ⅰ、Ⅱ类场地和7度>1008度Ⅲ、Ⅳ类场地>809度>60118第118页,课件共129页,创作于2023年2月3.10建筑结构抗震验算
根据“小震不坏,中震可修,大震不倒”的抗震设计思想,采用两阶段的设计方法:第一阶段:对绝大多数结构进行多遇地震作用下的结构和构件承载力验算,以及多遇地震作用下的弹性变形验算。第二阶段:对一些结构进行罕遇地震作用下的弹塑性变形验算。其中包括结构抗震承载力的验算和结构抗震变形的验算。3.10.1结构抗震承载力验算1.地震作用的方向(1)一般情况下,可在建筑结构的两个主轴方向分别考虑水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担。(2)有斜交抗侧力构件的结构,当相交角度大于15度时,应分别考虑各抗侧力构件方向的水平地震作用。(3)质量和刚度分布明显不对称的结构,应考虑双向水平地震作用下的扭转影响其他情况宜采用调整地震作用效应的方法考虑扭转影响。119第119页,课件共129页,创作于2023年2月3.10建筑结构抗震验算(4)8度和9度时的大跨度结构、长悬臂结构,9度时的高层建筑,应考虑竖向地震作用。2.重力荷载代表值式中——结构或构件的永久荷载标准值;
——结构或构件第i个可变荷载标准值;
——第i个可变荷载的组合值系数,根据地震时的遇合概率确定。3.结构构件截面的抗震验算(多遇地震下的抗震承载力验算)下列情况可不进行结构强度验算:(1)6度时的建筑(Ⅳ类场地上较高的高层建筑与高耸结构除外);(2)7度时Ⅰ、Ⅱ类场地、柱高不超过10m且两端有山墙的单跨及多跨等高的钢筋混凝土厂房,或柱顶标高不超过4.5m,两端均有山墙的单跨及多跨等高的砖柱厂房。120第120页,课件共12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州工商学院《视频编辑》2023-2024学年第一学期期末试卷
- 珠宝首饰店铺租赁合同三篇
- 投资回报率分析报告计划
- 品牌文化与企业使命的结合计划
- 内部审计在财务管理中的价值计划
- 班级工作计划协调
- 2024年度施工合同管理要点及建筑材料检验协议3篇
- 昆明医科大学海源学院《化学教师职业技能训练》2023-2024学年第一学期期末试卷
- 2024企业管理制度与劳动合同履行及员工关系管理合同3篇
- 2024年化学发光免疫诊断项目立项申请报告
- Rexroth (博世力士乐)VFC 3610系列变频器使用说明书
- 黑龙江龙江森工集团招聘笔试题
- 大班美术教案:拉手小人教案及教学反思
- 《Python Web 企业级项目开发教程(Django 版)》课后答案
- 铜及铜合金物理冶金基础-相图、紫铜
- 智慧酒店无人酒店综合服务解决方案
- 考研英语一新题型历年真题(2005-2012)
- 健身房会籍顾问基础培训资料
- 9脊柱与四肢、神经系统检查总结
- 秀场内外-走进服装表演艺术智慧树知到答案章节测试2023年武汉纺织大学
- 【高分复习笔记】王建《现代自然地理学》(第2版)笔记和课后习题详解
评论
0/150
提交评论