




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.2.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.3.已知函数,若有两个极值点,,且,则的取值范围是()A. B. C. D.4.某个命题与正整数有关,如果当时命题成立,那么可推得当时命题也成立。现已知当n=8时该命题不成立,那么可推得A.当n=7时该命题不成立 B.当n=7时该命题成立C.当n=9时该命题不成立 D.当n=9时该命题成立5.函数与在同一坐标系中的图象可能是()A. B.C. D.6.一几何体的三视图如图所示,则该几何体的表面积为()A.20B.24C.16D.7.由曲线,直线,和轴所围成平面图形的面积为()A. B. C. D.8.10名运动员中有2名老队员和8名新队员,现从中选3人参加团体比赛,要求老队员至多1人入选且新队员甲不能入选的选法有()A.77种 B.144种 C.35种 D.72种9.设圆x2+y2+2x-2=0截x轴和y轴所得的弦分别为AB和CDA.22 B.23 C.210.在等差数列中,是函数的两个零点,则的前10项和等于()A. B.15 C.30 D.11.若,则等于()A.3或4 B.4 C.5或6 D.812.一个篮球运动员投篮一次得3分的概率为,得2分的概率为,得0分的概率为0.5(投篮一次得分只能3分、2分、1分或0分),其中、,已知他投篮一次得分的数学期望为1,则的最大值为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,且下列三个关系:有且只有一个正确,则函数的值域是_______.14.已知集合,集合,则_______.15.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他3个盒子中球的颜色齐全的不同放法共有种.(用数字作答)16.已知等差数列的前项和为,_____;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:(为参数)和圆的极坐标方程:.(1)分别求直线和圆的普通方程并判断直线与圆的位置关系;(2)已知点,若直线与圆相交于,两点,求的值.18.(12分)选修4-5:不等式选讲已知函数的最大值为.(1)求的值;(2)若,,求的最大值.19.(12分)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份
2007
2008
2009
2010
2011
2012
2013
年份代号t
1
2
3
4
5
6
7
人均纯收入y
2.9
3.3
3.6
4.4
4.8
5.2
5.9
(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:,20.(12分)已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.21.(12分)已知,命题对任意,不等式成立;命题存在,使得成立.(1)若p为真命题,求m的取值范围;(2)若p且q为假,p或q为真,求m的取值范围;22.(10分)已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点,设1)证明:PE⊥BC;2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.2、D【解析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.3、C【解析】
由可得,根据极值点可知有两根,等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【详解】,,令可得:.有两个极值点,有两根令,则,当时,;当时,,在上单调递增,在上单调递减,,令,则,解得:,此时.有两根等价于与交于两点,,即的取值范围为.故选:.【点睛】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.4、A【解析】
根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以选A.【详解】根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以当时命题不成立,则命题也不成立,故答案为:A【点睛】(1)本题主要考查数学归纳法和逆否命题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同.所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性.5、C【解析】
由二次函数中一次项系数为0,我们易得函数的图象关于轴对称,然后分当时和时两种情况,讨论函数的图象与函数的图象位置、形状、顶点位置,可用排除法进行解答.【详解】由函数中一次项系数为0,我们易得函数的图象关于轴对称,可排除;当时,函数的图象开口方向朝下,顶点点在轴下方,函数的图象位于第二、四象限,可排除;时,函数的图象开口方向朝上,顶点点在轴上方,可排除A;故选C.【点睛】本题考查的知识点是函数的表示方法(图象法),熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.6、A【解析】试题分析:该几何体为一个正方体截去三棱台,如图所示,截面图形为等腰梯形,,梯形的高,,所以该几何体的表面积为,故选A.考点:1、几何体的三视图;2、几何体的表面积.7、B【解析】
利用定积分表示面积,然后根据牛顿莱布尼茨公式计算,可得结果.【详解】,故选:B【点睛】本题主要考查微积分基本定理,熟练掌握基础函数的导函数以及牛顿莱布尼茨公式,属基础题.8、A【解析】
根据所选3名队员中包含老队员的人数分成两类:(1)只选一名老队员;(2)没有选老队员,分类计数再相加可得.【详解】按照老队员的人数分两类:(1)只选一名老队员,则新队员选2名(不含甲)有42;(2)没有选老队员,则选3名新队员(不含甲)有,所以老队员至多1人入选且新队员甲不能入选的选法有:种.故选A.【点睛】本题考查了分类计数原理,属基础题.9、C【解析】
先求出|AB|,|CD|,再求四边形ABCD的面积.【详解】x2+y令y=0得x=±3-1,则令x=0得y=±2,所以|CD|=2四边形ACBD的面积S=故答案为:C【点睛】本题主要考查直线和圆的位置关系,考查弦长的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.10、B【解析】由题意得是方程的两根,∴,∴.选B.11、D【解析】
根据排列数和组合数公式,化简,即可求出.【详解】解:由题意,根据排列数、组合数的公式,可得,,则,且,解得:.故选:D.【点睛】本题考查排列数和组合数公式的应用,以及对排列组合的理解,属于计算题.12、D【解析】
设这个篮球运动员得1分的概率为c,由题设知
,解得2a+b=0.5,再由均值定理能求出ab的最大值.【详解】设这个篮球运动员得1分的概率为c,
∵这个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,得0分的概率为0.5,
投篮一次得分只能3分、2分、1分或0分,他投篮一次得分的数学期望为1,
∴
,
解得2a+b=0.5,
∵a、b∈(0,1),
∴
=
=
,
∴ab
,
当且仅当2a=b=
时,ab取最大值
.
故选D.
点评:本题考查离散型随机变量的分布列和数学期的应用,是基础题.解题时要认真审题,仔细解答,注意均值定理的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a,b,c的值,结合的最值即可求出函数的值域.详解:由{a,b,c}={2,3,4}得,a、b、c的取值有以下情况:当a=2时,b=3、c=4时,a≠3,b=3,c≠4都正确,不满足条件.当a=2时,b=4、c=3时,a≠3成立,c≠4成立,此时不满足题意;当a=3时,b=2、c=4时,都不正确,此时不满足题意;当a=3时,b=4、c=2时,c≠4成立,此时满足题意;当a=4时,b=2,c=3时,a≠3,c≠4成立,此时不满足题意;当a=4时,b=3、c=2时,a≠3,b=3成立,此时不满足题意;综上得,a=3、b=4、c=2,则函数=,当x>4时,f(x)=2x>24=16,当x≤4时,f(x)=(x﹣2)2+3≥3,综上f(x)≥3,即函数的值域为[3,+∞),故答案为[3,+∞).点睛:本题主要考查函数的值域的计算,根据集合相等关系以及命题的真假条件求出a,b,c的值是解决本题的关键.14、{3,4}.【解析】
利用交集的概念及运算可得结果.【详解】,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.15、720【解析】试题分析:本题可以分步来做:第一步:首先从4个盒子中选取3个,共有4种取法;第二步:假定选取了前三个盒子,则第四个为空,不予考虑.由于前三个盒子中的球必须同时包含黑白红三色,所以我们知道,每个盒子中至少有一个白球,一个黑球和一个红球.第三步:①这样,白球还剩一个可以自由支配,它可以放在三个盒子中任意一个,共3种放法.②黑球还剩两个可以自由支配,这两个球可以分别放入三个盒子中的任意一个,这里有两种情况:一是两个球放入同一个盒子,有3种放法;二是两个球放入不同的两个盒子,有3种放法.综上,黑球共6种放法.③红球还剩三个可以自由支配,分三种情况:一是三个球放入同一个盒子,有3中放法.二是两个球放入同一个盒子,另外一个球放入另一个盒子,有6种放法.三是每个盒子一个球,只有1种放法.综上,红球共10种放法.所以总共有4×3×6×10=720种不同的放法.考点:排列、组合;分布乘法原理;分类加法原理.点评:本题考查排列、组合的运用,注意本题中同色的球是相同的.对于较难问题,我们可以采取分步来做.16、70【解析】
设等差数列的公差为,由等差数列的通项公式,结合可列出两个关于的二元一次方程,解这个二元一次方程组,求出的值,再利用等差数列的前项和公式求出的值.【详解】设等差数列的公差为,由可得:,【点睛】本题考查了等差数列基本量的求法,熟记公式、正确解出方程组的解,是解题的关键.本题根据等差数列的性质,可直接求解:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线,圆,直线和圆相交(2)【解析】
(1)消去直线参数方程中参数,可得直线的普通方程,把两边同时乘以,结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,再由圆心到直线的距离与圆的半径的关系判断直线和圆的位置关系;(2)把直线的参数方程代入曲线的直角坐标方程,化为关于的一元二次方程,利用参数的几何意义及根与系数的关系,求的值.【详解】解:(1)由:(为参数),消去参数得.由得,因,,则圆的普通方程为.则圆心到直线的距离,故直线和圆相交.(2)设,,将直线的参数方程代入得,因直线过点,且点在圆内,则由的几何意义知.【点睛】本题考查简单曲线的极坐标方程,考查参数方程和普通方程的互化,关键是直线参数方程中参数的几何意义的应用,属于中档题.18、(1)2(2)2【解析】
试题分析:(1)根据绝对值定义,将函数化为分段函数形式,分别求各段最大值,最后取各段最大值的最大者为的值;(2)利用基本不等式得,即得的最大值.试题解析:(1)由于当时,,当时,,当时,所以.(2)由已知,有,因为(当时取等号),(当时取等号),所以,即,故的最大值为2.19、(1);(1)在1557至1512年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加千元;元.【解析】试题分析:本题主要考查线性回归方程、平均数等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用平均数的计算公式,由所给数据计算和,代入公式中求出和,从而得到线性回归方程;第二问,利用第一问的结论,将代入即可求出所求的收入.试题解析:(1)由所给数据计算得=(1+1+2+3+4+6+7)=3,=(1.9+2.2+2.6+3.3+3.8+4.1+4.9)=3.2,,,所求回归方程为.(1)由(1)知,,故1559年至1514年该地区农村居民家庭人均纯收入逐年增加,平均每年增加5.4千元.将1517年的年份代号t=9,代入(1)中的回归方程,得,故预测该地区1517年农村居民家庭人均纯收入为6.8千元.考点:线性回归方程、平均数.20、(1);(2)4.【解析】
(1)运用等差数列的性质求得公差d,再由及d求得通项公式即可.(2)利用前n项和公式直接求解即可.【详解】(1)设数列的公差为,∴,故.(2),∴,解得或(舍去),∴.【点睛】本题考查等差数列的通项公式及项数的求法,考查了前n项和公式的应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.21、(1)(2)【解析】
(1)对任意,不等式恒成立,.利用函数的单调性与不等式的解法即可得出.(2)存在,使得成立,可得,命题为真时,.由且为假,或为真,,中一个是真命题,一个是假
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理礼仪心得体会
- 朔州市朔城区2024-2025学年六年级下学期5月模拟预测数学试题含解析
- 厦门大学嘉庚学院《结构选型与模型设计》2023-2024学年第一学期期末试卷
- 上海欧华职业技术学院《主题阅读(1)》2023-2024学年第二学期期末试卷
- 广东外语外贸大学南国商学院《酿酒工业分析》2023-2024学年第一学期期末试卷
- 江西省赣州市定南县2025届五下数学期末学业质量监测试题含答案
- 赣州师范高等专科学校《语法与翻译》2023-2024学年第一学期期末试卷
- 垦利县2024-2025学年四下数学期末教学质量检测试题含解析
- 贵州健康职业学院《室内环境设计公共空间》2023-2024学年第二学期期末试卷
- 山西省晋城市介休一中2024-2025学年高三(英语试题文)一模试题含解析
- 2022年06月2022年广东肇庆广宁县司法局招考聘用政府雇员名师点拨卷V答案详解版(3套版)
- a320飞机空调系统工作原理与使用维护分析
- 施工机具进场检查验收记录
- HSK标准教程4上第1课课件
- 《液压与气动技术项目教程》高职配套教学课件
- 民俗学概论 第一章 概述课件
- 2022年七步洗手法操作考核评分标准
- 过敏性紫癜的护理PPT课件(PPT 33页)
- 基础降水井封井方案
- 110kv变电站电气主接线设计资料全
- 围术期患者转运专家共识
评论
0/150
提交评论