版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.3.1空间直角坐标系4.3.1空间直角坐标系一、引入
在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎么表示?0数轴是规定了原点、正方向和单位长度的直线。1-12Ax数轴上的点可用与这个点对应的实数x来表示。一、引入在初中,我们学过数轴,那么什么是0数轴
在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定的因素有哪些?平面直角坐标系上的点怎么表示?
平面直角坐标系是由两条原点重合、互相垂直的数轴组成的。一、引入0yxPMN
平面直角坐标系上的点用它对应的横纵坐标,即一对有序实数对(x,y)表示。在初中,我们学过平面直角坐标系,那平面思考一:
在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?猜想:
空间中的点可用有序实数组(x,y,z)表示。
思考一:在空间,我们是否可以建立一个坐标系,猜想二、讲授新课1、空间直角坐标系建立C'D'B'A'COAByzx
以单位正方体的顶点O为原点,分别以射线OA,OC,的方向为正方向,以线段OA,OC,的长为单位长度,建立三条数轴:x轴,y轴,z轴,这时我们建立了一个空间直角坐标系。记作:或二、讲授新课1、空间直角坐标系建立C'D'B'A'COABy1、空间直角坐标系的建立在空间取定一点O从O出发引三条两两垂直的直线选定某个长度作为单位长度(原点)(坐标轴)•Oxyz111二、讲授新课作图:一般的使右手系XYZ1、空间直角坐标系的建立在空间取定一点O从O出发引三条两两垂
通过每两个坐标轴的平面叫
坐标平面,二、讲授新课O为坐标原点x轴,y轴,z轴叫
坐标轴分别为平面、平面、平面。通过每两个坐标轴的二、讲授新课O为坐标原点x轴,yⅡⅦ面ⅤⅥⅠ面面ⅢⅣⅧ•O空间直角坐标系共有八个卦限2、空间直角坐标系的划分ⅡⅦ面ⅤⅥⅠ面面ⅢⅣⅧ•O空间直角坐标系共有八个卦限2、空间思考二:
空间直角坐标系中任意一点的位置如何表示?思考二:空间直角坐标系中任意一点的位置如何表示?•P1P2P3yxz••11P•1•3、空间中点的坐标对于空间任意一点P,要求它的坐标
方法一:过P点分别做三个平面分别垂直于x,y,z轴,平面与三个坐标轴的交点分别为P1、P2、P3,在其相应轴上的坐标依次为x,y,z,那么(x,y,z)就叫做点P的空间直角坐标,简称为坐标,记作P(x,y,z),三个数值叫做P点的横坐标、纵坐标、竖坐标。•P1P2P3yxz••11P•1•3、空间中点的坐标对于空•111•P•P0xyzP点坐标为
(x,y,z)P13、空间中点的坐标
方法二:过P点作xOy面的垂线,垂足为点。点在坐标系xOy中的坐标x、y依次是P点的横坐标、纵坐标。再过P点作z轴的垂线,垂足在z轴上的坐标z就是P点的竖坐标。MN•111•P•P0xyzP点坐标为P13、空间中点的坐
3、在建立了空间直角坐标系后,空间中任何一点P就与有序实数组(x,y,z)建立了一一对应关系.注意:
2、有序实数组(x,y,z)就叫做P的空间直角坐标,简称为坐标,记作P(x,y,z)。1、在第一卦限中,点的横、纵、竖坐标即为该点分别到平面、平面、平面的距离。3、在建立了空间直角坐标系后,空间中任何一点P就小提示:坐标轴上的点至少有两个坐标等于0;坐标面上的点至少有一个坐标等于0。点P的位置原点OX轴上AY轴上BZ轴上C坐标形式点P的位置XY面内DYZ面内EZX面内F坐标形式•Oxyz111•A•D•C•B•E•F(0,0,0)(x,0,0)(0,y,0)(0,0,z)(x,y,0)(0,y,z)(x,0,z)4、特殊位置的点的坐标小提示:坐标轴上的点至少有两个坐标等于0;坐标面上的点至少有xoy平面上的点竖坐标为0yoz平面上的点横坐标为0xoz平面上的点纵坐标为0x轴上的点纵坐标和竖坐标都为0z轴上的点横坐标和纵坐标都为0y轴上的点横坐标和竖坐标都为0一、坐标平面内的点二、坐标轴上的点规律总结:•Oxyz111•A•D•C•B•E•Fxoy平面上的点竖坐标为0yoz平面上的点横坐标为0xoz平C'D'B'A'COABzyx例1:如图D’(0,0,2)C(0,4,0)A’(3,0,2)B’(3,4,2)C'D'B'A'COABzyx例1:如图D’(0,0,2)如图,长方体ABCD-A′B′C′D′的边长为AB=12,AD=8,AA′=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为,x轴、y轴和z轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标。例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C’(12,8,5)B’(12,0,5)A’(0,0,5)D’(0,8,5)1258如图,长方体ABCD-A′B′C′D′的边长为AB=12如图,长方体ABCD-A′B′C′D′的边长为AB=12,AD=8,AA′=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为,x轴、y轴和z轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标。例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C’(12,8,5)B’(12,0,5)A’(0,0,5)D’(0,8,5)在平面xOy的点有哪些?这些点的坐标有什么共性?如图,长方体ABCD-A′B′C′D′的边长为AB=12如图,长方体ABCD-A′B′C′D′的边长为AB=12,AD=8,AA′=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为,x轴、y轴和z轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标。例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C’(12,8,5)B’(12,0,5)A’(0,0,5)D’(0,8,5)在平面xOz的点有哪些?这些点的坐标有什么共性?如图,长方体ABCD-A′B′C′D′的边长为AB=12如图,长方体ABCD-A′B′C′D′的边长为AB=12,AD=8,AA′=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为,x轴、y轴和z轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标。例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C’(12,8,5)B’(12,0,5)A’(0,0,5)D’(0,8,5)在平面yOz的点有哪些?这些点的坐标有什么共性?如图,长方体ABCD-A′B′C′D′的边长为AB=12练习.结晶体的基本单位称为晶胞,如图是食盐晶胞示意图(可看成是八个棱长为1/2的小正方体堆积成的正方体),其中红色点代表钠原子,黑点代表氯原子,如图:建立空间直角坐标系后,试写出全部钠原子所在位置的坐标。yzx练习.结晶体的基本单位称为晶胞,如图是食盐晶胞示意图(可看空间直角坐标系上课ppt课件
上层的原子所在的平面平行于平面,与轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是:(0,0,1),(1,0,1),(1,1,1),(0,1,1),(,,1).
中层的原子所在的平面平行于平面,与轴交点的竖坐标为,所以,这四个钠原子所在位置的坐标分别是(,0,),(1,,),(,1,),(0,,);
下层的原子全部在平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的坐标分别是(0,0,0),(1,0,0),(1,1,0),(0,1,0),(,,0).xyzO上层的原子所在的平面平行于平面,与轴交点的竖坐例3.在空间直角坐标系中,作出点P(3,2,1).yzx③①②P(3,2,1)例3.在空间直角坐标系中,作出点yzx③①②P(3,2,1)zxyO练习在空间直角坐标系中标出下列各点:A(0,2,4)
B(1,0,5)
C(0,2,0)D(1,3,4)134D`DzxyO练习在空间直角坐标系中标出下列各点:134D`D
在空间直角坐标系中,x轴上的点、y轴上的点、z轴上的点,xOy坐标平面内的点、xOz坐标平面内的点、yOz坐标平面内的点的坐标各具有什么特点?总结:x轴上的点的坐标的特点:xOy坐标平面内的点的特点:xOz坐标平面内的点的特点:yOz坐标平面内的点的特点:y轴上的点的坐标的特点:z轴上的点的坐标的特点:P(m,0,0)P(0,m,0)P(0,0,m)P(m,n,0)P(0,m,n)P(m,0,n)在空间直角坐标系中,x轴上的点、y轴上的点、z轴上练习:yx•Oz111•••ABC•DEF••1、在空间直角坐标系中描出下列各点,并说明这些点的位置A(0,1,1)B(0,0,2)C(0,2,0)D(1,0,3)E(2,2,0)F(1,0,0)练习:yx•Oz111•••ABC•DEF••1、在空间直角点P所在卦限ⅠⅡⅢⅣ坐标符号点P所在卦限ⅤⅥⅦⅧ坐标符号(+,+,+)5、点P在各卦限中x、y、z坐标的符号(-,+,+)(-,-,+)(+,-,+)(+,+,-)(-,+,-)(-,-,-)(+,-,-)点P所在卦限ⅠⅡⅢⅣ坐标符号点P所在卦限ⅤⅥⅦⅧ坐标符号(+•A1(1,4,0)•A(1,4,1)•(2,-2,0)B1•B(2,-2,-1)xOyz111••(-1,-3,0)C1•(-1,-3,3)C练习:在空间直角坐标系中作出下列各点
(1)、A(1,4,1);
(2)、B(2,-2,-1);
(3)、C(-1,-3,3);•A1(1,4,0)•A(1,4,1)•(2,-2,0)•
点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出满足下列条件的点的坐标.(1)与点M关于x轴对称的点(2)与点M关于y轴对称的点(3)与点M关于z轴对称的点(4)与点M关于原点对称的点(5)与点M关于xOy平面对称的点(6)与点M关于xOz平面对称的点(7)与点M关于yOz平面对称的点(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)(x,y,-z)(x,-y,z)(-x,y,z)练习:点M(x,y,z)是空间直角坐标系Oxyz中的一点
点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出满足下列条件的点的坐标.(1)与点M关于x轴对称的点(2)与点M关于y轴对称的点(3)与点M关于z轴对称的点(4)与点M关于原点对称的点(5)与点M关于xOy平面对称的点(6)与点M关于xOz平面对称的点(7)与点M关于yOz平面对称的点(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)(x,y,-z)(x,-y,z)(-x,y,z)练习:点M(x,y,z)是空间直角坐标系Oxyz中的一点小结:空间直角坐标系1、空间直角坐标系的建立(三步)2、空间直角坐标系的划分(八个卦限)3、空间中点的坐标(一一对应)4、特殊位置的点的坐标(表格)5、点P在各卦限中x、y、z坐标的符号小结:空间直角坐标系1、空间直角坐标系的建立(三步)2、空间练习1、如下图,在长方体OABC-D`A`B`C`中,|OA|=3,|OC|=4,|OD`|=3,A`C`于B`D`相交于点P.分别写出点D`
,B`,P的坐标.xzyOACD`BA`B`C`PP`(0,0,3)(3,4,3)(3/2,2,3)已知点P1(x1,y1,z1),P2(x2,y2,z2),且线段P1P2的中点为M(x,y,z),则中点坐标公式练习1、如下图,在长方体OABC-D`A`B`C`中,|OA练习zxyABCOA`D`C`B`Q2、如图,棱长为a的正方体OABC-D`A`B`C`中,对角线OB`于BD`相交于点Q.顶点O为坐标原点,OA,OC分别在x轴、y轴的正半轴上.试写出点Q的坐标.(0,0,0)(a,a,a)练习zxyABCOA`D`C`B`Q2、如图,棱长为a的正方对称点xyOx0y0(x0,y0)P(x0,-y0)P1横坐标不变,纵坐标相反。(-x0,y0)P2横坐标相反,纵坐标不变。P3横坐标相反,纵坐标相反。-y0-x0(-x0,-y0)对称点xyOx0y0(x0,y0)P(x0,-y0)P1空间对称点空间对称点练习1:点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出满足下列条件的点的坐标(1)与点M关于x轴对称的点(2)与点M关于y轴对称的点(3)与点M关于z轴对称的点(4)与点M关于原点对称的点(5)与点M关于xOy平面对称的点(6)与点M关于xOz平面对称的点(7)与点M关于yOz平面对称的点(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)(x,y,-z)(x,-y,z)(-x,y,z)关于谁对称谁不变练习1:点M(x,y,z)是空间直角坐标系Oxyz中的一点,知识小结空间直角坐标系点在空间直角坐标系中的坐标知识小结空间直角坐标系点在空间直角坐标系中的坐标空间直角坐标系上课ppt课件•P1P2P3yxz••11P•1••111•P•P0xyzP1MNP点坐标为
(x,y,z)ABC•P1P2P3yxz••11P•1••111•P•P0xyzⅡⅦ面ⅤⅥⅠ面面ⅢⅣⅧ•O(+,+,+)(-,+,+)(-,-,+)(+,-,+)(+,+,-)(-,+,-)(-,-,-)(+,-,-)ⅡⅦ面ⅤⅥⅠ面面ⅢⅣⅧ•O(+,+,+)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业模具供应销售协议范本一
- 2024年代收付款业务合作合同版B版
- 2024年产品市场推广及销售代理合同
- 江南大学《电力变换技术》2021-2022学年第一学期期末试卷
- 佳木斯大学《药物分析专业创新创业拓展》2021-2022学年第一学期期末试卷
- 2024供水设施建设项目井施工合同版
- 2024基础型货物承运协议模板版B版
- 佳木斯大学《离散数学》2023-2024学年第一学期期末试卷
- 暨南大学《英语听说I》2021-2022学年第一学期期末试卷
- 2024合伙人股份转让协议模板范例
- 多元智能理论在高中物理教学中的应用思考
- 《语言学纲要》修订版课后练习题
- PEP六年级上册英语单词汉语表
- 20级后进生会议课件-2021-2022学年高中主题班会(13张PPT)
- 压力容器日常使用状况、交接班和运行故障处理记录表
- 性格探索MBTI培训讲义(共71p)课件
- 2022年《国民经济行业分类》
- 广东省临床护理质量指标
- 道路冷再生施工工艺及方法
- 顶管计算手册
- 家政服务三方合同范本
评论
0/150
提交评论